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Introduction.

The problem of extending the notion of LEBESGUE area to the case of sur-
faces in an arbitrary metric space arose in [10]. It isthe purpose of this paper to:
give a definition of area which is applicable to surfaces in any metric space and
which is equivalent to the usual definition if the surface is in Fuclidean space.

By the very nature of the definition of LEBESGUE area, a reasonable pro-
cedure for obtaining a generalization is first to define such an area for a .
BANACH space and then to obtain the general definition by mapping the metrie
space into a BANACH space. It will be noted that once the area of a triangle
in & BANACH space is suitably defined, then the usual definition goes through
verbatim. Certainly, any general definition should agree with this natural
definition for surfaces in. any BANACH space, not only three dimensional Eucli-
dean space. The author has been able to show that his general definition agrees.
with this natural definition in case the BANACH space is finite dimensional.

It is clear that a LEBESGUE area exists for any suitable definition of the:
area of a triangle in a MINKOWSKI plane. Probably the most reasonable defi-
nition is to let z equal the area of the unit «cirele » in any plane, but the
writer was unable to show that this area, used by BUSEMANN [2], could be
employed in conjunction with the LEBESGUE definition. Consequently use
is made of an area which is equivalent to equating to four the area of a smallest
parallelogram cireumseribing the unit «circle». However, BUSEMANN has
since shown that the former definition can be used [3].

The results of this paper will be used to obtain certain intrinsic properties
of LEBESGUE area. -

The essential ideas of this paper were obtained by the author in his doctoral
dissertation written under the supervision of Professor C. B. Morrey. The
author wishes to express his gratitude to Professor MorREY for his very helpful
suggestions.

(*) Address: Department of Mathematics, Kenyon College, Gambier, Ohio, U.8.A. .
(**) Received June 20, 1950. .
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CHAPTER 1.

Area of plane figures in a Banach space.

§ 1. - Isometric maps of separable metric spaces into m.

We shall concern ourselves in this section with certain isometric maps of
separable metric spaces.into the space m of bounded sequences [1].
The following theorems are ploved in [1].

Theorem 1.1: 1If the conjugate Banach space E is separable, then so in K.

Theorem 1.2: Suppose D is a separable metric space, (x,y) is the
distance between ®,y & D, and {w,,x,, .. -} s an everywhere dense sequence of
points in D. Define the transformation T on D by T(@) = { (@, ;) — (@;, 3,) }.
Then T is an isometric map of D into m. The image of D is contained in «

separable linear subspace of m.

Lemma 1.1: If B is a separable subset of a Banach space B, then there is
a separable linear subspace of B which contains E.

Theorem L3 (HAuN-BanNAcH): If f is a linear functional defined in «a
subspace G of a wvector space B, then there exists a linear functional F defined
on B such that F(z) = f(z) for 1€ G and |F|| =

Theorem 1.4: For every x, in a Banach space B, there exists a linear
functional | defined on B such that f(x,) = |@,| and | fl = 1.

Definition 1.1: A linear functional of norm one will be termed a nor-
mal linear functional.

Theorem 1.5: Let B be a separable Banach space. Then there exists a
linear isometric transformation of B into a subset of m. :

Proof: Let {,a,,...} be an everywhere dense sequence of points in' B
and let f; be a normal linear functional such that f,(x;) = | . Define the
trasformation T on B by T(») = { f{(z) }.

Since each f; is of norm one, |fi(»)|< ||#| for each j, so that T(»)e m;
since each f; is linear, 7' is linear.

Now let « be any point in B and let {mik} be a subsequence of {x,} such
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that Iim @; ==®. Then, for each £,

ko0
f;'k(fv) == f:fk & ’J"fk) + f:‘k(w:‘k) .
But now .
Jfile—a )| < Je—u |, lim |o—a; | =0,
' E L i m E—mon ' A” B
lim | | fi (@) | — || = lim | | ;| — =} <lim ][:vjk—w]| =0.
Lo o3 ¢ Reoo R-sron
Therefore
lim | 1; (@) | =|lz] .
K=o :
Hence

sup | 10| = fo]

But since each f; is of norm. one, the equality must hold. From the linearity
of T and B and the definition of distance in B, the theorem follows.

Definition 1.2: A sequence {f;} of normal linear functionals in B is
mapping if
sup | fi(@) | = [«] for all  in B.

‘Theorem 1.6: Let B be a Banach space and suppose that { f;} is a map-
ping sequence. Then the transformation T defined by T(z) = { f(x)} for x in B
18 a linear isometric transformation of B into m.

Pfoof: The proof is essentially the same as that for theorem 1.5.

§ 2. — Lemmas on convex sets in the plane.

Definition 2.1: &8 is a convex set if, whenever P and @ belong to 8,
then the whole segment P@ is contained in 8.

Lemma 2.1: If 8§ is a bounded, symmetrie, closed convex set which has
an interior point, then there is a parallelogram P cbntuim’ng S which has the
smallest Buclidean area amonyg all such parallelograms. The midpoint of each
side of P is on S [6]. :

We shall call such a parallelogram of minimum area a smallest parallelo-
gram for S.

Lemma 2.2: ILet

S=FE[lax+Pyl=s1l, i=1,..,N],

(o9}

4 — Rivisla di Matematica.
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and let E(P) be the Euclidean area of a smallest parallelogram P of 8. Then

EP)y=4/4, 4= max A,

id<n

A, :1 U; U ‘ )
LB B
Remarks: Since ¢ and j may occur in either order, A= 0, where the
equality holds if and only if the sequences { «;, ..., ay } and { B, ..., By} ave
proportional, in which case P is the whole plane or an infinite strip. If we
rule out this trivial case, the lemma follows without difﬁculty from the pre-
ceding lemma.

Lemma 2.3: Let a={a;} and f ={f;} be linearly independent points
wn m and
*S(:E[laim+/9illllély i=1,2,..1.

[€R))]
Then, if P is a smallest parallelogram of S,
B(P) = 4[4, where A =sup 4,

- B B

Proof: For each N, let

Sy=Ellaw +pyi=1, i=1,2, .., N].
()
Let Py be the smallest parallelogram for Sy, and let 4, = max 4.
N
Clearly s, — 4> 0. Since each P, contains 8, E(P)< L(Py) for each N,
so that E(P)< 4/4.
Let f(#,y) = sup | a@w + By |- Then
8 = E[flx, y) = 1].

(zy0)

Now choose ¢ >0, and define

*@, y) = (1 —e)f(e, y) ,
8% = E [f“‘(Q?, y) =17,
(ay9)
=K [, y) = 11,
()

and let P* be the parallelogram obtained from P by expanding it in the ratio
1: (1 —e). Clearly X is the boundary of S*, P* is a smallest parallelogram
for 8%, and ' ‘

B(P¥) = (1 — &) 2E(P) .



for surfaces in metric spaces 51
For each (#,,y,) on X, there is an i such that

{ . ' ; ®em

| oLy Bt i > ¥y, Yo) = 1.

Hence | .o = fy}>1 for all («, y) -sufficiently near (#,, yo). . Thus, by the

HriNe-BoREL theorem, there is a finite set 4, ..., 4, such that each (», y) on 2
satisfies | o2 + ﬁ,-lc;z/ | >1 for some k. Therefore, for all sufficiently large N,
Sy is interior to S* and

1Ay = B(Py) £ BP?) = (1 — &) B(P),

or

The lemma fellows.

§ 3. — Linear subspaces of a Banach space.

Definition 3.1: Let @, @, and z, be linearly independent points in a
BaxacH space B. Then x is a plane in B if

2 2
Y Y

PE T e = > aw; and 2, a; =1.
=0 i=g

Definition 3.2: T is a linear manifold in B if

N
!
Tyy oy 0y € T — D) a0, € T,

i=1

for any real numbers a,, ..., ¢y.
The following lemmas are well known.

Lemma 3.1: Let 97 be a closed linear wmanifold in B such that there is
an x, & 90 and such that B is the smallest linear closed manifold containing z,
and G7. Then each point x in B has a unique representation on the form

L= Ay + x* ,
where 1 is a real number and x* & 9.

Lemma 3.2: Let 91 be as in the preceding lemma. Then there ewists @
linear functional f such that

2 E Gl > f(w) = 0.

Definition 3.3: By a hyperplane H in B we mean the set of all points
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% representable in the form # = ®, + 2% where #* is in a closed linear mani-
fold 97 of the type in lemma 3.1.

© Lemma 3.3: For any hyperplane H, there exists a linear functional f and
a constant ¢ such that

rEH «— fl) =c¢.

Definition 3.4: N linear functionals fir ooy i are linearly independent if

N
Defi=0>¢=0, i=1,..,N.

T=1
Definition 3.5: K is a subhyperplane if

e K < [fi(®) =¢] and [fu@) = c],

where f; and f, are linearly independent linear functionals.

Definition 3.6: Two hyperplanes H and H’ are parallel if there is a
linear functional f and constants ¢ and ¢', ¢ =¢’, such that H and H' are the
loci of f(#) = ¢ and f(#) = ¢’. A similar definition applies to sub-hyperplanes.

Lemma 3.4: Let w be a« plane and H be o hyperplane.  Then either
wc H, nc H', where H' is parallel to H, or s intersects H in a line.

Proof: Suppose m consists of all points » representable in the form
& =@y + Amy A+ g,

where «, and », are linearly independent, and suppose H is the locus of
f(@) = ¢ where f is a linear functional. If H intersects = in some point
X + Ay - pgwy, then

fl@e + Ay, + o) = f(wy) + Aof(m,) + fof(s) == ¢ .

Now, if f(#,) = f(x.) = 0, it is clear that wc H. Otherwise z, + A, +uw, € H
if and only if ‘

(A —A)f(2,) + (1 — uo)f(my) =0 .

Next suppose that H does not intersect . Then fa,) = 0, f(w,) == 0,

cand s c H', determined by f(z) = f(z,).

Lemma 3.5: Lt w be a plane and N be a sub-hyperplane. Then either
7w N, 7w does nmot intersect N, m intersects N in a line, or x intersects N in just
one point. ,

- The proof of this lemma is similar to the preceding one.
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Definition 3.7: If a plane x intersects a sub-hyperplane N in just one
point, then N is transversal to n.
We state the following further obvious facts:

Lemma 3.6:  (a) Two hyperplanes are parvallel if and only if they do not

intersect.

() If the sub-hyperplane N is transversal to the plane m, any parallel sub-
hyperplane N' is also tramsversal to any plane n' obtained from = by a trans-
lation; moreover there is a unique sub-hyperplane N' parallel to N through
any point of B. '

(¢) If = does mot intersect the sub-hyperplane N, some sub-hyperplane N’
parallel to N includes m or intersects it in a line. ‘

Definition 3.8: If N is transversal to =, P is any point of B, N’ is the
unique sub-hyperplane parallel to N through P and P’ is the intersection
of N’ with #, P’ is called the projection of P on & parallel to N; if § is any
set of points in B, the projection of § on x parallel to N consists of the totality
of the projections on z parallel to N of the points of §.

Lemma 3.7: If N is transversal to w and vy is any other plane in B, the
projection of y on m parallel to N is a point, a line, or the whole of =, the latter
being the case if and only if N is also transversal to .

§ 4. — Plane measure in a Banach space B.

Let X, be the set of all normal linear functionals of B and F any subset
of Xy, If r, 8 and ¢ are three points in B, define

firy glr) 1
AB(F5 7y 8, 1) = 3 sup | f(s) g(s) 1
- Li) gty 1

for all f, g in F.

- Theorem 4.1:

Ag(F; 0, a(s—r) +bt—7), o(s—7r) +d(t—r)) =|ad—be| Ag(F;r,8,1)=0.
The proof follows immediately from properties of determinants and linear

functionals.

Definition 4.1: AxXg;7,s,1) is the area of the triangle 4 in B with
vertices r, s and . We may write Agz(F, 4) for AgzF;r,s,t) and Agx(Ad)
for A2y, 4).

By theorem 4.1, it follows that if we introduce an affine coordinate system
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T on m, the area of any triangle in & is merely sonie constant multiple of the
Buclidean area of the corresponding triangle in F,, the Euclidean plane.
The constant depends upon z and 7. Hence there is a unique LEBESGUE
measure of sets on m which agrees with the area defined above for triangles.
Since the unit circle in = clearly corresponds under 7' to a bounded, closed.

convex set & symmetric to the origin, which is an interior point, the existence
of a smallest parallelogram for the unit circle in 7 follows from lemma 2.1,

We shall denote by 7, the parallelogram (or infinite set) cut out on = by
the hyperplanes f(w) = + 1, g(#) = - 1, where f and ¢ are normal linear
functionals.

Lemma 4.1: If P is a smallest parallelogram for the unit civele in the plane
7, then there exist normal linear functionals f and ¢ such that P =71;,. Purther-
more, there exist points e, and e, in 7 such that ¢, and e, are linearly independent,

( = ”C’:zl = fle,) = gle.) = 1, and f(e,) = g(e,) = 0.

€

Proof: We can certainly define normal linear functionals f* and ¢* in
the plane = such that P is bounded by the lines

i) = 1,  g¥@) =+ 1.

Now use the HaHN-BANACH theorem to extend f% and g* to the whole space:

Lemma 4.2: Let ¢, and ¢, be Unearly independent points in s, Associate
coordinates (x,y) with we, - ye,. Then

Jiley) /’2(91)‘I
fles)  fales)

where B(n,, ;) is the Buclidean arvea of the parallelogram in E, corresponding

E(ﬁflfg) = 4/4,, A =

to 7y 4,-
Proot: .The lines bounding =, ,, are
ofi(e,) + yfiles) = =1, sfy(e) + yfales) = =1
The lemma follows by analytic geometry.

Theorem 4.2: The area of a smallest parallelogram (for the unit circle)
in any plane m is 4.

Proof: We may as well assume that the plane = passes through the
origin. Let P = m,,, be a smallest parallelogram with e, and e, linearly inde-
pendent points in z such that fi(e)) = fale,) = e, = [eo] =1 and file,)) =
= fa(e,) = 0.

Now, since the area of P equals 8 times the area of the triangle with ver-
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tices 0, e, and e,, it follows that

. . file))  foled)
1'ed = 3 y €1y Os 2.: ; =
area P = 8A,(0, e, e) =4 fes) fules) !

Next, if ¢, and ¢g. arve any two normal linear functionals, w,,, certainly

contains the —unit cirvele; and-so;-associating -z~ with-Hi-as-i n-the-last-lenuna;
E(nﬂlgg) 2 E(ﬂfl 7f2)
since my;, is a smallest parallelogram by hypothesis. Hence, by lemma 4.2,

/ -,- . —ole)  gule)
Af; Ads,  where 4 = ] giles)  galen)

Finally,

sup 4,=1,
.’lxn”se-r[;

from. which the theorem. follows.
From this theorem. it can be seen that for any triangle 4 and any affine

coordinate system of =,

4E(A

Ly = D,

E(P)
where E(A) and E(P) are the Euclidean areas of the sets corresponding to /I
and a smallest parallelogram, respectively. ‘

Theorem 4.3: Defining the area of a smallest parallelogram for the unit
eircle to be four is equivalent to defining area by definition 4.1.
This follows immediately from the preceding theorem.

Theorem 4.4: Area as defined in this section agrees with Eulcidean area
for a Buclidean plane.

Proof: The Buclidean area of the smallest parallelogram circumscribing
the unit circle is four.

Theorem 4.5: If A={A4,}, B=1{B;}, and C = {U;} are any three
points in m, then the avea of the triangle with vertices A, B, and C is

1 4, 4; 1 I
5 Sup B, B; 1. .
“ a1 0 O 10

Proof: Set up a coordinate system in the plane so that the point
MB — A) -~ (€ — A) will have coordinates (4, ). The convex set in E,
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corresponding to the unit circle about 4 ig given by
S = B[| MB;— 4,) + u(C;— 4,) =1, i=1,2, ...

Now use lemmas 2.3, 4.2 and theorem 4.3.

Theorem 4.6: In any Banach space B which has a mapping se-
quence {f;}, '
1 flm)  fiw) 1]
Aple, y, 2) = 3 Sup Ly Ly 1.
of [fe)  He) 1|

Proof: TFirst map B into m linearly and isometrically by means of the
mapping sequence. The unit circle and smallest parallelogram are carried
into a unit circle and smallest parallelogram. Now use theorem 4.2 and
theorem 4.5.

Definition 4.3: A sub-hyperplane ¥ in B is area-perpendicular (a-p)
to a plane z in B if ¥ is transversal to 7 and if any triangle 7' in B projects
parallel to N onto a triangle T’ in = such that avea 1" < avea T.

Theorem 4.7: If f and g are normal linear functionals such that %y IS
« smallest parallelogram for the wwit circle in 7, then the sub-hyperplane N de-
termined by f(w) =0, g(z) =0 is a-p to m.

Proof: From the proofs of lemmas 3.4 and 3.6 and theorem 4.2, it
follows that f and ¢ are linearly independent and that N intersects the plane 7’
parallel to z through the origin only at the origin. Thus N is transversal
to zw. If the projection of a triangle in B on s parallel to N is a point or a
segment, the theorem is evident. Otherwise N is also transversal to the plane
of the triangle (lemma 3.7).

Now consider a smallest parallelogram P in the plane y through the origin
parallel to any given plane in B to which N is transversal. The area of the
parallelogram. P cut out on Y by f@) = +1, g@) = +1 will be greater
than or equal to the area of P, since P is a smallest parallelogram. But if 7"
is any triangle in  and 7" its projection in 7, then

area T __ area P -

e T >

area T’ area P
sinece P projects into a smallest parallelogram P* in n and P* and P both
‘have area 4. :

Theorem 4.8: The area of a parallelogram spanned by vectors of length
L, and 1, does not exceed 211,. :
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The theorem follows directly from definition 4.1.

Theorem 4.9: Suppose that there is a linear transformation from a plane
7w in a Banach space B onto a plane m in a Banach space B (posszbly B)

.-Such - that:
o -+ ae, -+ be, <~ ¢, -+ ae, - be,

<

where ¢y, ¢, and e, are in m, and 6, ¢, and e, are in w. If |ae, L be,
< k|lae, 4 be,| for all a, b then

Ag(2, y, 2) = B2 A p(w, ¥, 2)
where @, y and z are in m, v, ¥ and z are the corresponding points in 7.

Proof: The unit circle in 7 (with center at ¢) corresponds to a set
in 7z which contains the circle in m-(with center at ¢;) of radius 1/k. Thus a.
smallest parallelogram. in 7 corresponds to a parallelogram P in = which:
contains this circle. Hence

area P=4/k*,

AB(m, Y, z) area l_’ <k
AB(a, ¥, 2) area P

CHAPTER I1.

Lebesgue area in a Banach space.

§ 5. — Preliminary definitions.

By curve or surface we shall always mean FRECHET curve or FRECHET

surface. If a continuous function x is a representation of a surface S, and
if the range of x, R(®), is in a metric space E, then we shall say that « and S

are in B. By 8: [#, R], we shall understand that x is a continuous funetion.

whose domain, D(»), includes R and that S is the surface determined by | R.

Tf # and y are two continuous functions and 8 and 7' are two surfaces in
a metric space K, then D(z, y) and D(8, T) are the PR,LCHFT distances between
x and y and between 8 and 7, respectively.

It is convenient to define a PEANO or GEOCZE area in terms of an essential
multiplicity function. For the two dimensional case, RAp6 and REICHEL-
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DERFER [15] have defined one such function and CESARI [4] has defined another,
which he calls- the characteristic function. FEDERER [7] has discussed a more
general case where the dimension is not limited to two. For the two dimen-
sional case to be considered, the functions of (‘Esart and FEDERER are equi-
valent [7] and differs from the other at most on a countable set [14].

Let""be a JORDAN domain, F, the Buclidean plane, and ¢ the set of all

continuous functions on R to E, which is metrized by the function d such that

df, 9) = sup ) —g(@) ], Lyec.
x€ER
Then let J(f, y) be the essential multiplicity with which f assumes the value Y
in the sense of FEDERER. We could equally well use either of the other
functions.’ ' ‘ - o '
Let L, be the two dimensional LEBESGUE measure on F,.
Define the GEOCZE area, G, on ¢ by

G() = | M(f, y)dLay , jec.
oN

We shall make use of the standard theorenis relating to LEBESGUE and
‘GEOCZE area in the plane [4, 5, 7, 13].

If A is a set, then .4, 4% §(4) and 4° will denote the closure, boundary,
diameter and interior, respectively, of A. If 4 is contained in a plane s,
then | 4] is the LEBESGUE measure of 4 in =.

Definition 5.1: 7t is of bounded variation in the sense of CEsARI, B.V.C.,
it G(f) < - oo

Definition 5.2: f is absolutely continuous in the semse of CESARI,
A.CC, it ‘

{a) for each =z> 0 there exists a 6>0 such that }: G(f| =) < e,
i=1
whenever m,,..., =, are simple polygonal regions without common interior
points such that }: | 7| < 8
i=1
(b) it 4 is any simple polygonal region in R, then G(f| A) = 2 G(f| a:)
=1

for any subdivision of 4 into simple polygonal regions s, ..., 7,.
Now let us suppose that a Cartesian coordinate system is introduced on F,.

Definition 5.3: Let f be B.V.C.. Then, if the limit exists, define

J(fs u, v) = lim G/lo .

Haq)—>0 [ q !
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where ¢ is any orviented square in R (sides parallel to the coordinate axes)
containing (w, v) in its interior. J is the generalized Jacobian of Cmsar: [5].

Definition 5.4: Let # be a function defined on the interval [a, &) with
range in an arbitrary metric space D. Then the variation of a, Vi(m), is

defined. by
Vi(x) == sup 2, (2(t), 2(tiey))

for all subdivision o = &, <<#, <...<<t, = b.

Definition 5.5: If & is as in Definition 5.4, then = is absolutely
continuous, A.C., if for each &> 0 there is a 6> 0 such that

y t”)a" ))<81

Q@ ’ - . . N -
whenever >, | ;' —1t;] << d, the intervals [t, ;] have no interior points in
1

common and are contained in [a, b].

With these definitions of bounded variation and absolute continuity of a
function of one real variable in any metric space D, we extend verbatim the
definitions of bounded variation and absolute continuity in the sense of
ToxeLLI, B.V.T. and A.C.T., to apply to functions of two variables with
range in D. ,

We shall make use of the PETTIs integral [11] for integrating a function
with range in a BANACH space.

Lemma 3.1;: If x is a continuwous function defined on a region R uzth
range in a Banach space B, and if B is a measurable subset of E, then there
ewists & point v in B such that

flwy) = / fla(s, 1)) ds dt

b5
for every linear functional f in B. By definition

U (s, tydsdl = @, .
PO
Definition 5.6: Let «# be a continuous function defined on a JORDAN
region R with range in a BANACH space B, and let D be any domain whose
closure is contained in R°. Let 6 be the shortest distance between D* and R¥*.
Then define », on D by
u—3~h vﬁh .
: 1
oty ) = e / / x(s, t)ds dt , 0<h<d, (wov)ED.

uih wlh
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As a consequence of the preceding lemma we have
- ™ bJ

ui—h vm:—‘h
o (u, v)) =

T 4R /f(@(s, ) dsdet .

uSh. B

Definition 5.7: Let f& ¢ be defined by fr (%, v) = (@(u, v), y(u, v)).
Then f is of class L [10] if '
(@) @, @, ¥., y. ave defined almost everywhere in R,

() (2. — x9,) is summable over Ro,

(¢) lim // ;

h->0 g?

y Y oy , 3. o
LYo — Lylfu I — { Tuune — Lrolf e [[ dudy =0

for every oriented rectangle R < Rv.

§ 6. — Peano area in a Banach space.

The exposition .of PEANO and LEBESGUE area in a BANACH space will be
complicated by the introduction of pseudo areas. At times it seems to be
necessary to approximate to the LEBESGUE avea of a surface by means of
pseudo LEBESGUE areas of the same surface rather than by area of appro-
ximating surfaces. The study of these pseudo LEBESGUE areas requires the
use of corresponding PEANO areas.

Let # be a continuous function with domain a JORDAN region R in the
(%, v) plane and range in a BANACH space B. If f and g are linear functionals,
let @ be the continuous transformation from R to i, defined by

20 (u, v) = (8, 1) = (flx(u, v)), g(@(u, v))) , (u,v) € K,

where s and ¢ are cartesian coordinate in B,.
If X'y is the set of all normal linear functionals on B and ey, let

(e, D) = [[ M@ | Dy s, v as at
Yo

and
GB(F7 2, D) = sup Gf”({l}, D) ’
fuer
where D is any domain contained in R°.

Definition 6.1: Let Py(F, z) = sup. 2 Gy(F, @, D) where o is any finite
. o De€o
set of disjoint domain in R. Let Py(zx) = Py(Zy, o). Pp(w) is the Peanc

area of » in B.
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Theorem 6.1: Let B be any closed linear subspace of B containing .
Then Pgl(x) = Pgw).

Proof: If fe Xy, let f=f/{fll,. Then f| B is a normal linear fun-
etional on B'. If f,ge 2y, let

1

s =5y, V=tlgly.

Then
Mz | Dis, t) = M@ | Dy s', 1)

for any domain D c R'. Hence

[ M@\ D s, ) As dt = ———wv [[M(2"" | Dy 5", ¢ ds’ dt’
JJ e ipin o Tl /21 2395 1)

1

“

in case the integrands are summable. In any event

i, D) = G (2, Dy,
and so

Pplx) £ Pylr).
On the other hand, if f and ¢’ &€ X, then they may be extended by the

HaBN-BANACH theorem to f and g€ 2. Obviously

Gllg(”; D) = G;J? (x, D)
and so

P(@) < Pyx) .

Theorem 6.2: For each w, there cwists a denumerable subset F c F such
DT o X :
that Py(F, z) == P (F, x).

Proof: Let D, ..., D™ be a system of disjoint domains in R® such that
n .

In
[

CPu(F, ) < D) Gy, w, DYy +1/n, n=1,2 ..
p==1

and let f”, r =1, ..., I, be elements in F such that

(n) /5,")1(") 73n) i ot
Gp(F, @, DY) <max G (@, D) + 1/nj, .

7
b
Now combine the countable number of countable sequences { f }, n=1, 2, ...,
r =1, ..., L., into a single sequence {f.}. Then F = { f,} satisfies the con-
dition of the theorem.
If ¥ is denumerable, then we shall suppose that the elements of F are



62 B. SILvERMAN: Definitions of Lebesgue area

arranged in a single sequence and that ¥, consists of the first # elements of F..
Otherwise, F, consists of the first n elements of F.

Theorem 6.3: PgF, v) == 11111 Pu(F,, ).

In case I is a finite set, then avll of the theorems that we require are proved.
for P exactly as the corresponding theorems are proved for the lower area
of RAp6. If F is not finite, these theorems can be proved with the aid of
Theorem 6.3. In particular, if D(z,y) = 0, then PP, z) = Py(F, ), and
so we can define the PEANO area of a FruCHET surface §, PL(F, 8), to be
Py(F, z), where @ is any representation of S.

Definition 6.2: If Fc X, and tE€ B, let ][t}jrhsup}ft)] We shall

call |t|, the F-form of t. Evidently, if F is a mapplnv sequence then
It]m = ||¢], for each t€ B. Define dyp(,y), D,(x, y), and D8, T) in terms.
of the F-norm as d(z, y), D{z,y), and D(S, T) were defined in terms of the-
norm, where # and y are continuous functions, and § and 7 are sulfaces in B.
If D8, 8) — 0, then we shall write &, re S.

Definition 6.3: Let
J(@7; u, v) if defined,
J(x75 u, v) = ,
0 otherwise,

W(H; @5 u, v) == sup J'(a'; v, u).
‘ ro€l
Let F(a77; u,v) be the value of the ordinary Jacobian of a7 at (2, v)..
Then define ¥F'(#; w,v) and W(F; z;u,v) by means of F(arv; #, V) as
J'(@7; w, v) and W(F; x; u,v) were defined by means of J(z/s; w, V),
Definition 6.4: = is of class Cy(F) on R if
(@) @7 is A.C.C. for f, g F,
(b) W(F; x) is summable on R
For brevity, we write Cp for Cy(2',) and W(z) for W2, @).
Theorem 6.4: If §: f[x,R] and Pp(F, 8)< + oo, then J (@795 u, v)
exists almost everywhere in R° for ;g€ F, and
J W@ w50, v aquas < pyp, 5).
R ‘ -
Theorem 6.5: If #€ COy(F) on R, then Pu(F, )< + oo, J(x; U, VY
exists almost everywhere in R° for f, g€ F, and

[| W(F; ©; u,v)dudv = Py(F, z).
R ’
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Definition 6.5: « is of class ¢’ on R if
(@) f(x) is of clags C' on R for any fe Xy,
(b) W(x) is Smnmable on RO,

Definition 6.6: A continuous function w is quasilinear on R, if R is.
a simple polygonal region and if there exists a subdivision of I into a finite
number of triangles on each of which x is linear.

Definition 6.7: Suppose z is quasilinear on £, being linear on each.
triangle 4,,..., A,. We define

Byl x) =

M

AR, b(/l NE

-

i=

It is clear that E (F, ) is independent of the division of R into 4; as long
as 2 is linear on each A4;.

Definition 6.8: A surface P is a polyhedron if it admits a quasilinear
representation ». Let HyF, P) = E,(F, »).

Definition 6.9: « is Lipschitzian on R if for some M > 0,
lz (U, V)—a(u, )| < M || (U, V)— (u, )| for every (U, V), (u,v)€ER.
Theorem 6.6: If @ is of class ', quasilinear or Lipschitzian on R, then
PP, z) = // Q(F; xy u, v)dude .
e
If = is quasilinear, then Pg(F, ) = Eg(¥, ¥). ,
It follows that H (I, P) is a lower semi-continuous function in the class.

of polyhedra. If F = X, then we write Ey(P) for E4(F, P) and call E4(P)
the elementary area of P.

§ 7. — Lebesgue area in a Banach space.
Lemma 7.1: If 8 is a surface, then there exists a sequence { P,} of
polhyedra such that P, — S.
Definition 7.1: For each Fc Xy, we define an F-LEBESGUE area of S,

Ly(F, 8) = inf {lim inf E (P, P,)}

w00

for all sequences { P,} of polyhed_m such that P, e S We define the Le-
BESGUE area of § by Ly(8) = Ly, 8).



64 E. SILvERMAN: Definitions of Lebesque area

Theorvem 7.1: If S is any surface, then theve exists a sequence { P, } of
polyhedra such that P, 78 and Ey(F, P,) — L,(P, S).

By definition, L (F, S) is independent of any representation. Tf z is a
representation of §, then we put Ly(F, v) = Ly, 8).

If S I'S a-surface._in B qnd { p"},lsa '“'Seqﬂenfﬁe"’Of"“polyhedra.""in"““B ,..,Su.ahw.»,u, I

that P, — 8 and EyP,) - Ly(8), then there obviously exists a separable
closed linear subspace B’ of B such that S and P, are all in B, n =1,2, ...
Since Ly (P,) = E4P,) and P, — S considered as surfaces in B’, it follows
that L (8) < lim inf By (P,) = lim inf Ey(P,) = Ly8). On the other hand,

n—>o N OO
Lp(8) < Ly(8) dirvectly from the definition. Hence, since P, (8) = PL(8),
there is no loss in generality in always supposing that B is separable.

Theorem 7.2: If F contains a mapping sequence of B, then Ly(F, 8) =
= Lg4(8).

Proof: By Theorem 4.6, Ey(F, P) = Eg(P) for any polyhedron P in B.
Furthermore, by definition 1.2, the F-form equals the norm.

Many of the standard theorems of LEBESGUE area are now proved in
the wusual way. In particular, if x is of class (', then Ly(F, x) =
= [/QU(F; @; u, v) du dv.

RO
Definition 7.2: @ is of class L,(F) on R if for HLyePF,
(@) F(@; u, v) exists almost everywhere in RO,
(b) W(F,x) is summable over R,

{¢) lim //] F@5 u, v) — F@7; u, v) | dudv = 0

h~>0 ;1,'

for every oriented rectangle T c R°. We write Ly, for Ly(2),).

Theorem 7.3: If € Lg(Fy on R and F is finite, then

P

Pp(F, ) = Ly(F, x) = U W(F; v; w,v)dudo .

Re

Definition 7.3: « is of class EB on R if z satisfies (@) and (b) of Defi-
nition 7.2 and if for each oriented rectangle T c R°,

lim //[QD(x; Uy V) — W(By5 w, v) | dude = 0 .

h—>0 T

The reader will observe that if z is Lipschitzian on R, then x is also of
class L, on R,
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Ry

Theorem 7.5: Let w& Ly,. If there ewists a denumerable set F c Xy, such
that Ly(x) = lim Ly(F,, @), then € Ly on R.

4

Theorem 7.6: If B is finite dimensional and F is a mapping sequence
for B, then L,(S) = lim Ly (F,, S) for every surface S in B.

Proof: ILet ¢ be the unit sphere in B and ¢* its boundary. Choose ¢,
0<e<1/2. Since o* is compact, there exist points x, ..., #, of % such
that ||« — x| < e for every » € o* and some 4. Now choose f; € F such that
|fi(®)]>1—¢. Then | ) | =| file—a) +f;(x)|=1—2e. Hence for
each z € B there is an i such that E1 ¢! —2¢)-t | fi{)|. This, and Theo-
- rem 4.9, imply that if P is any polyhedron in B, Ey(P) = (1 — 2&)2E (I, P)
for » larger than any of the j,, 4 =1, ..., k. The theorem follows.

CuarTER II1.

Lebesgue area in m.

§ 8. — General theorems.

Lemma 81: Let {#'} be a uniformly bounded equicontinuous sequence of
functions defined on a Jordan region R. Then for each &> 0, there exists a
finite set z'1, ..., x'% such that for each % and all (w,v) in R, there exists a § for
which '

@i, v) —ai(u, v) | <e.

Proof: The sequence is conditionally compact in the space of continuous
functions defined on R.

Lemma 8.2: 4 necessary and sufficient condition that a function x = {a'}
be continuous in m is that the sequence {2*} be uniformly bounded and equi-
continuous.

The proof follows immediately from the definition of m.

If y = {y*} is any point in m, let g, 2, be defined by g:(y) = y°. Let
G ={G1y-sgn} and G ={g;, +=1,2,...}. By Definition 1.2, G is a
mapping sequence so, by Theorem 7.2, L (»)=L_(& ). In computing

5 — Rivista di Matemaiica.
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L, (w), the use of this equality is preferable to the use of the original definition
L, (@) = L, (X, @).

mn

- Definition 81: If T maps G into &, a subset of &, and = is any con-
tinuous function on R to m, then define the function Toz on R to m by

| g(a) it ge &,
g(Tox) = \
f 0 otherwise .

Define the function Tz on R to m by
' Y(Tx) = Ty(z) for each geq.

Obviously Toz and Tz are continuous.
Assume, in the following lemmas, that 7' and @' are as in this definition
amd that @ and y are continuous functions.

Lemma 8.3: D(Tw, Ty) = D(Tox, Toy) < D(x, y).

Definition 8.2: If § is a surface, then let ToS and T8 be the surfaces.
defined by Tox and T« where x is any representation of S.

We notice that if P is a polyhedron, then TP and ToP are polyhedra and
that E (TP) = E (ToP)=E (G, P)< E_(P).

m

Lemma 8.4: L (T8)=L (ToS) = L,,,(G', Sy L (8) for any surface §
m m.

Proof: The first equality follows easily from the preceding paragraph.
Let P, @ 8, B (G', P,) - L, (&, 8), eacli’ P, being a polyhedron. Then

m

ToP, ¢ ToS and ¥ _(ToP,) = E, (G', P,). Hence

Eﬂm<mmgm'gﬁA,&.

Next, let @, @ ToS, B, (x,) ~ L, (ToS), each n, being a polyhedron. Then
Tom, g ToS and B (Torm,) — L, (ToS). Now let # be a representation of &
on Q: 0=<wu,v<1, and let 2, be a quasilinear representation of Two, on @
such that z, Ef Tom, this being possible exactly as in F,. Furthermore, there
is no loss in generality in supposing that the maximum diameter of any triangle
of hne&uty of z, is less than 1/n. Now define the quasilinear function W,
on @ such that (i) Tow, = 2., () if g& &, then g(w,) agrees with g{x) on ver-
tices of the ’mang]es ot hne'ulty of z,, and (i) w, 1s hnear on these triangles
of linearity.

It is elear that w,, _>:v and that B (&, w,) = B, (2,). Hence L (G, 8) =
= L (G z) < hm inf ¥ (G w,) = lim inf D (2;) = lim inf & (Tmc,,) = L (ToS)

n—sw n->c >0
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“Theorem 8.1: L (8) =1lim L (G,, S) for any swrface 8 in m.

"
N>

Proof: We need only show that L (8)< liminf L (G,, S). Suppose

L.(S)< + oo. Choose >0 and take §>0 such that L (8) > L,(8)—¢

for all surfaces & with D(8, &) << d. )
By Lemma 8.1, there exists an n, and a map T.: & — @G, sueh that
D(S, T, 8)<< 6. Hence L (G, ,S) = L AT 8) > I, (S)—s It L (8)= -+ co,

the obvious modification eomplctes ‘rhe proof,;

Theorem 8.2: Ifais of class L on R, then L, (1) == // W (x; u,v) dudo.
, r

Theorem 8.3: Let ., k=10,1,2,... be d.eﬁtned on R and suppoé(’ that

@, =% @, for each i =1,2,.... Then L, (z)<liminf L (x,).

TR

Proof: By Theorem 8.1, L _(a)==lim L (G,,a,) for each k Hence

k>

L, () == Hm { L _(G,, x) } = lim {liminf L (G,, 2,) } <

n-m N 00 Koo 002

< lim {im'inf L ()} = limvinf Lm( )

n——>m k30 I

§ 9. — Kolmogoroff’s principle.

The development of this section was suggested by « The KoOLMOGOROFF
principle for the LEBESGUE area» by R. G. Hrerser and BE. J.:MICKLE.’

If @, P, and U(P) are points in m, then denote the »*" component by =,,
P,, and U(P),, respectively.

Theorem 9.1 (Iixtension theorem): Let U be a transformation with
domain B cm and range B c m such that | U(P)— U(Q)| <k |P— Q| jm P
and @ any two points in E. Then U can be ewtended to a szschztzzan trans-
formation U“‘ defined for all of m, with range included in m, such ‘that
| U¥@) — T | <k |2 —y], whew @ and y are_any two points in m.

If we deﬁne T () = inf (U(P), + k I’P—wH), then we may define U’L ij
PeE
U¥x) = { T (z)} for all = in m.

Proof: We must show (1) the range of. U* is contained in m, (ii) P E E _—
< U*(P) = U(P), (ill) | U*@= o —yl." T
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To prove (i), let # be any point in m and P be any point in K. Then

| To(@) — To(P) | = | inf (U(Q), + & [@ — x]) —int (TU(Q), + & | @ — P|) | <
Qeklk QEL

Qer
Therefore
| To@) | S| TP | + k|P—a| S | UWP)| + k| P—a

for all n, and hence U*(x)& m.
To prove (ii), notice that, if P& E,

(U@ +&[Q—P|)—(UP), +k|P—P|h=

Z2k[Q—P]|—[U@).— UP).|z0,
and so
int (U(Q), + & |@— P) = U(P),
QEE
0or

U*(P) = U(P) .

To prove (iii), use the same proof as in (i), but replace P by any point
¥ in m.

Theorem 9.2: If [aw + by | < & [ax + by for all a, b where v = { », },
y={y} 2 ={w,}, end y = {¥,}, then

| By Ty Xy |

i h
| &
sup | =k*sup "

| I Yn | | Ym Y

This is an immediate consequence of Theorems 4.5 and 4.9.

Theorem 9.3: If y is the image of a quasilinear function v under a
Lipschitzian transformation of constant k, then L (y)< k2L (w).

Proof: For almost all (u,v) in R, for all (u, v) interior to some triangle
of linearity of z,

ly(w + a, v + b) —y(u,v) | < & |2 + a, v +b) — a(u, )| =k |aw, + bz,

for all sufficiently small ¢ and b, Whem x, and 2, are constant vectors.
Hence
[y + a, v +b) —yi(u, v) | <k |az, + ba,|

for all ¢ under the same conditions. How, by RADEMACHER’s theorem of
Lipschitzian functions [12], % has a total differential for almost all (u, v).
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Henee, for almost all (%, v) in R, and all ¢ and b we have

Layl — byl | £ k [lax, -+ ba, |

which inlpl]‘(‘,‘s
%} ay-——bips ”.< ,],m”,a,;(:nw,wxml);l,r i

where ¥, = {y.} and y, = {y!}.
An application of the preceding theorem now gives

i ko i R
4 ] & &

sup : ‘/’,‘ Yoo <k sup I
ik Yy Yy - ik e Ly

Noting that y is of class L,, we see that

L(y) = H Q(y: u, v)dude < kz.” QW (x; u, v) dude = k2L,(x) .
7 e

Theorem 9.4 (KOLMOGOROFF's prineciple): If @ and y are continuous
functions such that |y(u, v) —y(U, VY| < & e, v) —o(U, V)| for all (u,v),
(U, V) in R = D)= D(y), then L,(y) = k2L,(x).

Proof: First we observe that there is no loss in generality in supposing
that R is Q. Then we notice that if z(u, v) = a(U, V), then y(u, v) = y(U, V).
Thus we may define a transfomation 7' from R(x) to R(y) as follows: Let
P e R(x) and suppose a(u, v) == P. We define T(P) = y(u,v). Clearly T is
single valved and satisfies a LrpscHIrz condition with constant k. Then we
may extend 7 (using the extension theorem) to the whole of m to be Lipschitzian
with the same constant k. -

Let {z,} be a sequence of quasilinear functions defined on ¢ such that
2z, 2o and H,(2,) = Lu(z). Then {z,}={ T(zn)} is a sequence of
Lipschitzian functions of the type of the preceding theorem. We have WY
since the transformation is Lipschitzian, and so

L,(y) < lim inf L,,(z,) < k2 lim inf L,(z,) = k2L, (@) .

Corvollary: If z and y are isometric, then L. (¢) = L,(y), where, by iso-
metrie, we mean that |w(w, v) — (U, VY| = Jy(u, v) — y(U, V)| for all (u,v),
(U, V) in R == D(x) = D{y).
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CHAPTER TV,

Eyclic-additivity:

§ 10. — Preliminary remarks.

We have already seen that for our problem there is no loss in generality
in supposing that a BANACH space B containing a surface S is separable.
Hence, by Theorems 1.5, 6.2, and 7.2, there exist countable sequences F’
and F" such-that Lg(8) = L,(F’, §) and Pu(8) = Py(F"”, 8). If we com-
bine these two sequences into another sequence F, then obviously hoth of
the above equalities will hold with F replacing ¥’ and F' The use of the
sequence F enables us, in a simple manner, to obtain a particularly useful
surface & in m which is isometric to 8. It would be desirable to show that
Ly(8) = L,(8), since it would follow that the LEBESGUE area of any two
isometric surfaces imbedded in BANACH spaces would be the same. The writer
cannot show that the equality holds for all surfaces S and all BANACH spaces B.

Let the transformation U:B — m be defined by U(y) = {fy)} where
F={f} If »is any continuous function in B, then let x, be defined by
Lo (U, 0) = U(x(n, v)).

Theorem 10.1: Pya) = P (G, ).

Proof: Let D be any domain interior to R*, where R is the JORDAN
region on which @« is defined. Then

@@, D) = [| M@ | Dy s, t)ds At — 27w, , D)
FoN
for all 4, 4.
As a result of this theorem, we see that

PB(‘T) : Pm(G! 11’*) g ‘P;n(x"’v(-) § Lm(gii‘) g. Ll,’(',r) .

Herice, if 2€ L, and o’ is anvy isometric function in nt, then-
, B & -
, v
Pp(@) = L, (x") = Lylx).

Definition 10.1: Let # be continuous on R. Then 2 is light (mono-
tone) if the inverse image of each point of the range of @ is totally _disconnected
(2 continuum).

It we identify points at F-norm zero, B remains a metric space. If » is
light in this space, then = is F-light in B. ’
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Definition 10.2: A surface S is nondegenerate (F-nondegenerate) if it
admits 4 light (F-light) representation. Suech a representation may be called
nondegenerate (F-nondegenerate).

Lemma 10.1:. T D{x, y) == 0, then there exist. monotone-light factorizations !
w(w, v) = lmy(w, v)),  my(D(@)) = 9T, (u,v) € D),
y(s, t) = l('nbz(sy 1) 7n2(—D(y)) = 47, (87 1) € D(y),

awhere m, and m, are monotone and 1 is light [13].

g7, or any setb homeommpluc to it, may be referred 10 as the nndcllp space
of the smfaee determined bV .

‘We observe that if « is light, then we can take m, to be the identity map
of D(#). Then my(D(y)) = D(x) and y(s, t) = x(my(s, t)) for (s,t)€ D).

Now let T : B — H,, T = { D), ..., fo()} for &€ B. Then
]/n |] TO e = 2] = 17(Q) Hence, by Theorem 4.9, 1/n:Ey (T(4)) =

By(F,, A1)l< B(1(4)), where 4 is any triangle in B. From this it is easy

to see that L (,') and Ly(F,, z) are 'simult"meously finite, where = = T{(z)
and x is in B. Also, if # is F,-light then  is light.

Theorem 10.2: Any F,-nondegenerate surface § in B for which
Ly(l,, 8)< -+ co admits a representation of class L(#,) on the unit circle C.

Proof: Let z be a nondegenerate representation of S and x be- defined
in terms of # as above. Then # is nondegenerate. Furthermore, LI, (77) < - oo,
s0 there exists a function ¥ of class LE on € such that D(z, y) = 0. Also,
since x is light, there exists a monotone map m: C - D(x) such that (s, 1) =
= z(m{s, 1)). Now define y(s, t) = x(m(s, 1)) for (s,#)€ €. Since m is con-
'tinuous, y is continuous. Next, f,(y(s, 1)) = f(@(m(s, 1)) = w(m(s, 1)) = y(s, ?),
‘where #; and ¥, are the i coordinates of # and y respectively, and so y is of
class Ly(F,). i

§ 11. - Cyelic addititivity.

Let » be any positive number. Then define

0 - 0o,
Mo) = ? e—r

=7, :
p g= B

If « is a fixed point of B and x is continuous in B, let 4
' (uy v) = o M) e (u, v) — o) (@(u, v) — a) s -(u, v) € R(w) .

Clearly a’ is continuous.
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Lemma 11.1: If D(w, y) = 0, then Dz, y') = 0.

As a consequence of this lemma, we can define the surface & obtained
from § as follows: If x is a representation of S, then let 8" be the surface
© determined by 2. Obviously, D(S’, §) < r.

As—a-result-ot-a-straightforwiird compitation, Wwe obtain
Lemma 11.2:  [a'(u, v) — 2'(U, V)| < ||=(u, v) —a(U, V).
Theorem 11.1: If P is a polyhedron, then Ly(P') < Egy(P).

Proof: Let x be a quasilinear representation of P. Then (z4) = (2"),
where x, is defined as in § 10. Next, since 2 and @' are Lipschitzian,
Ly(®) = L, (@), and Lya') = L, (x) where ), = (z,). Finally, using KorL-
MOGOROFF’s principle,

Ly(P') = Lg(a') = L, (x%) < L, (v,) = Lp(®) = B4(P) .
The following theorem is now proved as in [13].

Theorem 11.2: Lg8) =0 if and only if the middle space reduces to a
dendrite.  If Ly(8)>0, and 8, ... are the surfaces in the cyclic decomposition
of 8, then Ly(8) = > Ly(8,).

The corresponding theorem for P, is also true.

Theorem 11.3: If Ly(F,, 8)< -+ oo, then Ly(P,y 8) = Py(F,, S).

Theorem 11.4: If L, (8)<< + oo, then L_(8) = P _(8).

Proof: For each n, L,(G,, 8) << + <o, and so

L,(8) =lim L (G,, ) =lim P, (@,, §)< P ()< L

n
oo =20

(8) .

m

CHAPTER V,

Lebesgue area in metric spaces.
foe)

§ 12. — Definitions and theorems,

In this section we shall always suppose that x is a continuous function
defined on a JORDAN region into a metric space D.
Theorem 12.1: There exists an tsometric map T from R(x) into m.

Proof: We may regard R(z) as a subspace of D. R(2) is obviously
separable.
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Definition 12.1: Let T be an isometric transformation of R(w) into m.
Define -
L(x) = L, (y)

where y = T(#). By KOLMOGOROFF’s principle, L(z) is independent of 7.

Theorem 12.2: If {@,} is a sequence of continuous functions in D such-
that », = ®, then L(x)< lim inf L(z,).

kel

Proof: Map D into m by means of an everywhere dense sequence of
points in the subspace consisting of RB(x) and I(x,). This can be done since
each range is separable. The mapping is clearly isometric as regards points
of R(z) and R(x,). If the image of x is y and the image of w, is y,, then
¥, =y by the above remarks. But L(») = L, (y), L{z,) = L,(y.) by Defi-
nition 12.1, and L, (y) < liminf L, (y.).

N
Since it is clear that L(z) = L(y) if » and y are two representations of a
surface § in D, we can make the following definition:

Definition 12.2: If §is a surface in a metric space D, and @ is a repre-
sentation of 8, then we define the LEBESGUE arvea of 8, L(8), by L(8) = L(z).

Definition 12.3: Let z, and ®, be continuous functions defined on
JORDAN regions R, and R, with ranges in metric spaces .D, and D,, respectively.
Then define

D@y, m) = inf { max | (m,(w, v), %:(U, V) — (@(v(w, v)), 2o(v(T, V) | }

(u,0)ERy
(U, V)eR,

for all homeomorphisms 7: B,— R,.
Clearly D metrizes the space of all continuous functlons defined on JORDAN
regions with range in mefric spaces.

Definition 12.4: The relation between @ and y defined by D(z, y) = ¢
is an equivalence relation. An F-Préchet-surface is a class of such equivalent.
functions. ‘

Definition 12.5: If S, and 8, .are E-Fricurr surfaces, then D(8S,, 8,;) =
= D(2,, ®,) where #, and », are representations of 8, and S,, respectively.

Definition 12.6: If PR, let z"(u,v) = (v(u, v), x(P)). 1f P={P,}
is an everywhere dense sequence in R, let 2P(u,v) = {@Fn(u,v)}. Define
Wy, (w5 u,v) = W(G; #?; u,v) and W(x; u, v) = sup W g(ws; u, v).

D

Theorem 12.3: Let 2, k=0,1, ... be defined on R into metric spaces D,.
Suppose ‘that for each PE R, xF(u,v) =X aF(u, v). Then L(w,) < lim inf L(z,).

R
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Proof: Let ® = {P,} be an everywhere dense sequence in K and define
Xilu, v) = { aPr(u, v) }. Now, using Theorem 8.3 and Definition 12.1,
L(wy) = L, (X,) < lim inf L, (X,) = lim inf T{(z,).

ko R oo

Goroltary:Tf Dim, 5 =0, then Liw,) < lim 16t L),

k—>oe

Definition 12.7: =z is of class L on R if, for some D, 2P is of class
L, on R.

Definition 12.8: Define

. @l vg), w(ug, vy))
Dy, v5) == lim, - e v

U~rUg

o (wlug, v), By, vy))
Dt(1tq, o) = Tim 02 ¥ #liko, vo)) .

if these limits exist.

Lemma 12.1: If x is continuous on R and B.V.T. on each oriented
rectangle T'c R, then D,x and D exist almost everywhere in R° and are sum-
-mable. :

The proof of this lemma is similar to the case in which # is a real valued
function [9). '

Theorem 12.4: If @ is A.CT. on each oriented rectangle T < R with
| Dz and | D 17 summable cver Ro, 1/p -+ 1 lq=1, p=1, ¢=1, then 2 is
of class L.

_ Proof: By the triangle inequality, | @"(u,, v,) — 2" (u,, v,) | < (@(uy, vy),
-2(Uy, v)) for every (uy, ;) and (%2, ;) € R. Thus each 2” is continuous and
is- A.C. in % for the same values of ¢ for which this is true of . Thus each 27
s ALCUT. Also

Ll (u, vg) — wP(ug, vo) | (w(u, ). (1, g))
U — 1y = Py — e |
and so
) ,
! .’l?[ (uo; IL‘O) l g. Duw(u‘oa /2"0) .
Similarly

| " (ug, vo) < Dya(uy, vo) .

 From __.these results, the hypothesis,. and a well known ~result on  tran-

sformations. of class L [9], we can conclude that the transformations (u, v) —
— (@P(u, v), 2%, v)) arve of class L, whether or not P and @ are in 9.
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Finally, for almost all (u, v) € R, Wgy(: u, v) = 2(Dyw(u, v))(D,@(u, v)), which
is summable by the HOLDER inequality.

Theorem 12.5: If = ds of class L on R, and if P is the everywhere

,,,.(Zgns(_awsequ(mnp of Definition.12:7, then-Lin) = /’/ QL)w(ry-;

R, ,
This theorem. is an immediate consequence of Definition 12.1 and Theo-

rem 8.2, where use is made of an everywhere dense mapping into m by means
of the points corresponding to 9.

wn)dadn
¥ :

Theorem 12.6: If the flat transformation (w,v) — (@F(w, v), @2 (u, v)) is
of class L for all P, @ in R, and if W(x; w, v) is summable over R, then

L(x) = // W lx; w, v) du do .
o .
Proof: Obviously « is of clags L on R, and if @ is any everywhere dense
sequence in R, then

Liz) = H Wa (wiu, v)dude = // Qx; w, v) dude .
) i RY

Now let M be the BaNacH space of bounded functions on R with |f] =
= sup | f(P)| for all f in M. Then the transformation T(P) = (P, @) — (P, Q),

PeR .
where P is a fixed point and ¢ is any point of R, is isometric from x(IR%)
into M. .

Next, if y is a continuwous function in m and Y is an isometric function
in M, then clearly L, (Y)=1L_(y). ‘ ,

Finally, if X = T(»), then L{zr) = LM(X)‘ by the a_boyé remarks, and so

Lw) = Do) = Py 2 [[ (X5 0, v)duds = [ Wi v, v) dudo .
Vi b

Theorem 12.7: If S is in a finite dimensional Banach space B, then

L(8Y = L (8).

Proof: Let F be the sequence and & the surface of § 10. Then
Lp(8) =lim Ly(#,, 8) = lim L (G,, 8) == L,(S) = L(S).

N 00 n ==

m

Theorem 12.8: If §is ina in Banach space B, then Py(8)=< L(8)=< L4(8).
If S admits a representation of class Ly, then the equality holds througho ut. If
for some FcX,, Ly8) =1limLyF,,S), then L(S) = Ly8). If L(8) =0,

then L(S) = L,(8).
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