EDWARD SILVERMAN (%)

An intrinsie property of LEBESGUE area. (*+)

1. -~ Introduction.

H. BuseMANN gave a definition- of intringic area in which the area of a
surface depends only upon geodesic distances in the surface and not on the
way in which the surface is imbedded in its containing space [2] (*). It is the
purpose of this paper to show that if a FrREcHET surface admits a representation
for which the geodesic distance between pairs of points varies continuously
with these points, then the LEBESGUE area is also intrinsic.

The procedure used here will depend upon definitions and rvesults of [6].
In particular, we will use the area defined there which, in fact, agrees with
LeBeEscUr area for surfaces in Eueclidean space.

Let C be the set of continuous functions defined on a square ¢ to m, the space
of bounded sequences [1]. If a& C, denote the area of # by L(x) and the
i™™ component of # by #f. As usual, we say that « is Lipschitzian if for some
M >0, Jap)—(@)| < M|p—g|| for all p, ¢ in Q. (The norm, of course,
depends upon the space to which it applies). By D(wx, y) we understand a
modified FricuET distance between a and y defined by

D(@, y) = inf { max | | @(p) — 2(g)] — |y(h(p)) — y((@) | l}
n P EQ
where h is a homeomorphism of domain « onte domain y. ~'We use the cor-
respondingly modified FrEcHET distance between functions defined on closed
intervals of the line. We write @, T #, for =, €, n=1,2,.., if
sup Jl@,(p) — @(p)| — 0. : ‘ X

»EQ
It will be convenient for our purposes to introduce the followmg nommon.

If € C, let 2 be defined on @ X @ to the real numbers by #(p, ¢) = — a(g)].
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Clearly @ satisfies the properties S:

S, a(p, q) = a(q, p),

S,: Bp, p) =0, F(p, =0,
Bq: E(pyq). == (1) = B (p, )
S, 2 is continuous.

That the properties S characterize such functions is a consequence of the
following lemma.

Lemma 1: Let 2 be defined on @ xQ and satisfy S. Then, if { P: Y ois an
everywhere dense sequem’e in Q, the function &* & C defined by 2%(q) = { 2(ps, ¢) }
has the property that z* = z

Proof: That z is umformly bounded on @ x @ follows from its continuity.
Hence 2%(g)em for ¢€ Q. By 8, S,, S,

| 20y 0 — 20, 1) | = 20, ») — E(p, 1) | = (g, 7)

and by 8,, 2(¢q,7) =0 as ¢ —r. Hence 2*€ (. That ” “(p) — 2% (q)] = 2(p, q)
for all (p, ¢) € @ xQ follows from the continuity of z.

The following theorems are proved in [6]. -

Theorem 1: If we €, yel, and 3=y [ic, &p, )<y, q) for
(s ©) € QX Q), then L(x) < L(y).

Theorem 2: If z€ C is szs(,lut tan and if Q is subdivided into tri-

angles Al,v..., A,, then Lz zL(LI Ay).

Theorem 3: Let w,, n=0,1,..., be in C. If &' % ) for each 1, or if
lim D(w,, ) = 0, then L(x,) < lim inf_ L(/L,,).
n—> N—» o

Theorem 4: If x& O, then there exists ‘a sequence z, b of quasilinear
, q
functions in € such that im D(w,, #) = 0 and lim L(x,) — Lx).

N 00 n—3 Co

y

2. - v-length.

Let f and g be continuous functions defined on closed intervals [e, b] and
[¢, d, respectively, with range in a metric space. If f(b) gle) then let f @ g
be defined on [a ¢, b -+ d] by

fonu) =ft—e, at+cestsb+e,
font) =gt—0b), b+est<b+d.

Now let I' be the space of continuous functions defined on bounded closed
intervals of the line with range in m.
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Definition 1: A real valued function g on I' is a »-length if there
exists a constant K such that for f, g& I

a) diam range f= u{f) =< K diam range f,

(

(b) | ulf) —ulg) | = 2KD(f, ),

(e) if f is linear, then wu(f) = diam range f,
(d) w(f & g)= ulf) + wlyg), it fo g is defined.

We now define some funetions on [' which are »-lengths.

Let fe ' and suppose that f is defined on [, b]. For each nz=1, let
L Sty be n 4 1 pointsin [a, b] and let (py, ..., Pura) be the set of cor-
responding points, under f, in m. Let this set of points be denoted by 8,.
Then 8, will be termed an admissible set of points for f. Denote the sum of
the distances [pu,— pifl, i =1,.., %, by d(8,) and let w.(f) be the least
upper bound of sueh numbers for all admissible S,.

Lemma 2: u, s a v-length.

Proof: If wetake K = »in Definition 1, then we see that (a), (b), and (¢)
are evident. To prove (d), use the notation defining f&¢ and let a F ¢<
SHZ o St b -+ d determine 8, for fog. Let k be the largest integer
for which ¢, < b +¢. Now define 8, and S, for f and g, respectively, by
S == (g ey Ungs)y Sy 7= (Vyy ony Vnty)y Where w0, =t — ¢y ooy Wy, == by— €, Upy =
= = Upp =0, AN V) == o=V == 0 Vpry == bprg = By eery Vpq = Lpp — D.
Then d(8,)< d(8.) + d(8)) and the lemma follows.

The following lemma is obvious.

Lemma 3: p.(f) = tora(f)-

Next, let {a,}, n =1,2, ..., be a sequence of non-negative numbers, with
an infinite number of non-zero terms, such that :

Sa, =1 and Y na, = K.

n=1 n=1
Now define » on I' by

7’(]‘) — z a’n/’m(f) ] f = ]’ .

n=1

Then » is a »-length. » is also a p-length in the sense of M. Morsw [4].

3. - Fanetions generated by »lengths.

Suppose that x is a v-length on J” and that ¥€ €. Tet p, g€ @ and let §
be any econtinuous function defined on an interval [a, b]. such that f(a) == p,
f(b) = q, and range f is contained in ¢. Then f is admissible for p and gq.
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Define :
(P, g} = inf u(o(f))
for all admissible f, and

Ty (peq).=1im.a,_(p.q)
i n 7

kil
Lemma 4: If Ps g and r are three points in Q, the | wp, Q) — 'L‘u(q )| =
!L(p, 7). If wi(s, t) is uniformly bounded fm Al s, 1€ Q, then
[, Q) —ai(q, 1) | = @, 7). ‘
Proof: Let f and g be admissible for ¢ and p, and p and r, 1espe(t1vely
Smoe & is a v-length

walf & ) = u@=(f) & a(g) < u(f)) + w@(g))

and so
(6, 1) = 3,0, @+ B0, 7).
Similarly,
-’Ey(p: 9= (?7 r) -+ 'l"u(% ') -
Finallv,
Zpy @) — Fi(qy 1) | = | lim @, (p, q)whm @, (g 1) ] =
e GO
=lim | fr; p, q)— _q, 7) | < lim inf 'v Sy 1) = ,(p, ).
7300 300

If @ satisfies conditions S, then we can always define a funotion e 0
such that %% == # exactly as we did in Lemma 1. -

Lemma 3: a¥fed.

Proof: Tt is .melely necessary to verify that 33 satisfies condlmons S.

Lemma 6: If », y& C, then D(x ‘,q/ﬂ)< ZKD(J’, y).

Proof: Tet f be admissible for i, seQ If » is a homeomorphism
of @ onto ¢, then

| @ (F) — u(y(M()) | = 2ED(f), y(h(f) =

2K max | a(fe) — a(f(w) | — | y((f(0)) — y (i) | | =
ta € domain f
2K max || a(p)—a(q) | — [y(k(p)) —y(M(@)] | = 2KA(h)
7,04 €Q

where the equality defines A(h).
We then have, as in Lemma 4, ] (7, S)——-—_/(h(’)), h(s)) | =< 2K A(h) and so
D(a‘L , ’l/” )= inf 2K A(h) = 2K inf A(h) = 2K1) (2, v).

Lemma 7: If € C, then ,= @ ,
Proof: That a;“(/p, q) = @(p, q) is’ an immediate consequence of Deh

nition 1(a).
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Theorem 5: x is the monotone favtor in a monotone-light factorizarion of .
Proot: If ye O, let. F'{y} be the components of y~(t) for ¢t € range y.
‘We must show that F{x} =F{2*} and that =¥ iz monotone.  Suppose
geF{a} and ¢>0. Take >0 so that @(r, s) < e if [r—s|< 6 and put

Tr=="{p[inf{p="ql <6 Tt-is-not~hard-tosee-that-Tis—connected; open
g€y
(relative to @), and that diam a(h) << 2e. Consequently % is arvewise con-

nected and @, (p, q) <. 2K for p, g€ gc h. Thus ru is constant on ¢. TIf
ke F{x;} then  is constant on k since o< @, . Therefore F {2} = F{,}.
If f is admissible for p and g, then diam range :1!*(7‘)< IK diz‘uu range a(f)
and so lzc(;w;!f‘(f))_g_'lf diam range z¥*(/) < K* diam range x{f) ;L )’f(p)»«
(] < K3ja (p)— @ ()] Thus if t€vange o, (v} ),‘l is constant on
== 2 t). Suppose there are two components, & and &, of g. Let
G,l = {p| e fn}and B, ={p|lai{p)—1]| < L/n} for each posi-
tive integer n. Since g == 0 ¢, we may suppose that for some » the open
set G, has distinet components 4 and B such that hc 4 and ko B. Let
Hyy =Guyn A and K,y = GuuunB. Then H N K, GunANnBc
cFuundnBcG,nAdnB=A40B=10since G,n4d and G,n B are com-
ponents of G, containing the components 4 and B. . If p€hn H,;;, = h and
qE kN K,py =k, and if 7 is admissible for p and ¢, then range f intersects
the complement of (.., since otherwise range f would be contained in G,
and would connect the distinet components 4 and B. ‘Therefore diam range
m;'f(f) cannot be less than 1/(n +4-1). This contradicts the fact that (7, * g

n

constant on ¢g. Therefore g has but a single component and #* is monotone.

L (,r‘f."‘ =Z<

F22 IL

4. - Lebesgue area intrinsic with l‘espcct to r-length.

\Ve are now able to show that LEBE%GUE area in intrinsic in 1he sense
that the »-length of a eurve is intrinsic.

Lemma 8: Let w€ C be quasilinear. Then L(x) == L(zF).

Proof: Because of Theorems 1 and 2 and Lemma 7, it is sufficient to
show that PEH o, ) < @(p, ¢) for all p and g in a triangle of linearity of w, but
this is evident since there exists a (linear) admissible hln(,txon f for p and ¢
for which wa(f)) = @(p, q).

Theorem 6: If xc O, then L(z¥) = L(x).

Proof: By Theorem 1 and Lemma 7 , it is sufficient to show that L(;zr;f) <
= L(x). By Theorem 4, there exists a sequence { x, } of quasi]inear functions
‘n ¢ such that D(w,, %) -0 and L(z,) — L(®). Then D(z* Ty rr”) — 0" and
so Lz “’) < lim inf L{z n“) = lim inf L(x,) == L{®).

N~ o0 n—i= o
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Theorem 7: If &7 € 0, then L(w}) = L(»).

, Proof: As in the preceding ’rheomm, it is sufficient to show that
L(2]) £ L(»). Tt is easy to verify that { {an, s a monotonically non-decreasing

sequence of continuous funections converging pointwise to the continuous

function % Hence-the-convergenee-is-uniform- -and-the-theorem results by

the application of Theorems 3 and 6.

- A geodesic property of Lebesgue arvea.

In this section we state and prove the theorem indicated in the introduetion.

According to FRECHET, the curves of a set B ave uniformly divisible if for
each ¢ > 0 there exists an integer n such that each carve of B may be decom-
posed into n consecutive arcs in each of which the oscillation is less than e.

For brevity, let us say that a curve g is in a point set H if the range of
a representation of 'g is contained in H.

Theorem 8: Let B be a set of curves cach in a point set. H. Then a
necessary and sufficient condition that the curves of B be compact is that they be
uwniformly divisible and that H be compact.

Now define ,a{p, ) = #,(p, ) and ,,3(p, q) = (,3%)u(p, q) for each positive
integer n and (p, q) € @ X Q. Since 4(p, ¢) < . 2lp, ¢), wecan define X on
QxQ by Xp, q). = lim ,2(p, q). Observe that ;f(p, 9= (X*).un(p. 9=

s
< X.(p, q) == f(p, ¢) and so the equality holds throughout.

If we put G(2(f)) equal to the ordinary length of the curve (represented by)
a(f) and IEG(p, q) = inf G(a(f)) for all admissible f, then va(p, q) is the geodesic
distance between z(p) and x(q).

Theorem 9: X = mG

Proof: Fix (p, 7)€ @ xQ. We observe that X(p, q) = ’1;6,(]2, q) and hence
we assume that X(p, q) <+ oco. Let f, be an admissible curve for p and ¢
such that p,(X*(f,)) X?)ﬂ ® q) +1/n = Xip, q) q) +1/n, n=1,2,.... Now
choose &> 0 and let N = [(X(p, q) + 1)/e]l.  Then, for n> N, puy(X*(f,)) <
< u XHFD)) < X(p, q) + 1/n. Consequently { X*(f,)} is a uniformly divi-
sible sequence and theve exists a continuous function g defined on an interval
[@, b] of the real line such that D(.X'*(f,,k), g) — 0 for some subsequence { ,}
of the integers. Thus u.(g9) = ilﬁ ,u,,,(X’f‘(f,,k)) = 11’131> ci}nf f“"k(X *(f"z':)) =

< limint (X(p, ¢) + 1/m) = X(p, ¢). But diam g= X(p, @), and 50 ua(g) =
k00 :

= X(p, q) for each integer m. , :
Now suppose that @ is light. Then X™* is light as well as monotone and
so is topological. Define g* on [a, b] by g*(t) = X*(g(¢)). Then ¢* is admis-
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sible for p and ¢ and we have that ,u,,,(q) = i (X*(g*)) for all m. Thus
X(p. q) = (X )G(Z) q). That X(p, q) = ma(Pv q) results from the trivial obser-
vation that a;G(p, = (X* Py Q-

The theorem results from well known properties of the middle space of & [5].

w-»,-'Le»lnma«m»9»-v»»~r~If»\~»7‘2;~e~0~w~--rthe<n-~~~»»:v~"1‘~e-‘wao»r»-vcachwpositiuo intey Bgor .

Proof: It is sufficient to show that @7 € C. For this purpose we exa-
mine @, and observe that it s:msheb 8,, S,, and S,. Henee it only remains
to show that #, is continuous if 1;0 is. But

B(py @) — &0y ) | S| Bulpy @) — Bulp's ) | + | B, @ — By ) | <

< B4y P) + 345 4') S Folp, ) + d6la ) -
The lemma follows.

Theorem 10: If 1(,e Oy then L(w) = L(wg).

Proof: Since ,* is continuous for each n, we have L{,x*) = L(x); since
{.@)is a monotmally non-decreasing sequence converging pointwise to a con-
tinuous function, ;"EG, we know that the convergence is uniform. The theorem
follows by the application of Theorems 3 and 1.

For simplicity the set ¢ was rvestricted to funetions defined on @ with
range in m. Actually, we could permit the continuous functions to be defined
on JORDAN regions with ranges in metric spaces.
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