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1. — This Note is a revised and improved version of an unpub]ished paper
in which we generalized the following result of CESART [3].. (Numbers in square
brackets refer to the blbhoglaphy at the end of this \Tote.) Let T be a con-
tinuous mapping from the unit square Q: 0 <w,v <1 into the Euclidean
wy-plfme, given by functions x= ax(u, v), ¥ = y(%, v), (4, v) € @, for which the
following conditions hold.

(i) Each of the functions x(w, v), y(u,») is ACT in @ (absolutely eontl—
nuous in @ in the sense of ToNELLI [5, I11. 2.64]).

(ii) There exists a positive constant o such that each of the first partial
derivatives z,, #., ¥., ¥. belongs to the LEBESGUE class L*** on @ [5,1. 3.10].

Then the mapping 7 is ACB in @ (absolutely continuous in @ in the BANACH
sense [5, IV, 5.4]) — that is, for every positive number ¢ there exists a positive
number § such that for every system o of non-overlapping oriented squares s
in @ the sum of whose aveas is less than 6 one has the relation 3 |Ts| < e.

SEo
(A square, or a rectangle, is said to be oriented if its sides are parallel to the

respective coordinate axes. A system of squares, or of rectangles, is said to
‘be nonoverlapping if no pair in the system has any common interior points.
It EF is a measurable set in the Euclidean plane then |E| denotes its two
dimensional LEBESGUE measure.)

2. — We sought to generalize this result of CESARI in two directions: first,
by considering the case.in which 7 is a continuous mapping from Buclidean
n-space into Buclidean N-space, and second, by weakening the requirement
that the first partial derivatives of the mapping functions belong to the L-
BESGUE class L**%. Now CEesar1 has given an example in [8] to show that in
his condition (ii) described above the LEBESGUE class L*** cannot he replaced
by the LEBESGUE class 1* if his theorem is to be valid. Yet there remained
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the possibility that the LEBESGUE class L*** might be replaced by some appro-
priately defined class L°*°, In the course of conversations on this subject,
A. P. CALDERON called our attention to a class of functions more general than

those oceurring in the CESARI theorem fo1 which he esta,bhshed in [1] a gene-

completc dlffezentlal The functions considered by OALDERON, to be telmed
C-functions in the sequel, are defined in section 3. Our study of these results
of CALDERGN led to the consideration of an even more general class of functions,
t0 be termed the class of generalized Lipschitzian functions in what follows
(see section 6), which, in a certain sense, seems to play the role of a class L2+
(cf. sections 12, 13). In particular, we found that these generalized Lipschitzian
functions lead to adequate extensions of the result of CESARI described above
(see section 20). The purpose of this Note is to describe the generalized
Llpseh1tz1an functions and some of their properties, as well as certain questlons
to which they give rise.

3. = A C-function of CALDERGN is a function f(, v) which is defined, real-
valued, and continuous on the unit square @: 0 <w,» <1 of the ww-plane
and satisfies the following conditions.

(i) The function fis ACT in @ (see section 1 (i)).

(i) There exists a real-valued function g(¢), 0 << co, with the follo-
wing properties: (a) the function ¢ is non-decreasing on 0 <t< oo; (b) the
function ¢/p(¢) has a finite (improper) integral on 0 <t << oo; (¢) the funection
@(|grad f]) is summable in Q.

4. ~ In [1] CALDERSN establishes the following remarkable inequality for
any C-function f. For each oriented square s in @, let w(s, f) denote the oscil-
lation of f on s. Then

! 12
o, N <E{ [[olemaspauao ', scq,
where K is a finite constant independent of the square s in Q.

5. - Actually CALDERGN makes further restrictions on the function @
(eg., that ¢(0)=0 and ¢ is convex) for other purposes in his paper. Inspection
of his proof for the above inequality shows that the only assumptions needed
on @ are those listed in section 3 (ii) above. Moreover, CALDERGN states and
proves his results in Euclidean n-space. Our results, to be deseribed presently,
may also be established in #n-space, but the case n = 2 reveals all the essentials
- of the question, so we restrict ourselves to the plane in order to simplify the
presentation.
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6. — The inequality of CALDERON described in section 4 suggests the con-
sideration of the class of functions f satisfying the following conditions:
(i) The function f is real-valued and continuous on the unit square
@:0 <wm, v<1.

- (i)~Phere-exists-a-real-valued;-non-negative;-summable-function—@-de-
fined on @ such that

w(s, f) < {//d') dudw }1"2 ,

for every oriented square s in .

If @ is bounded on @, it is readily seen that the preceding inequality is
equivalent to the assertion that f satisfies a LrpscHITZ condition on @. Thus
conditions (i) and (ii) may be regarded as defining a generalized LIPSCHITZ
condition ; accordingly, a function f satisfying conditions (i) and (ii) is termed
generalized Lipschitzian in @ —or, more explicitly, generalized Lipschitzian
in @ with function @, The inequality of CALDERON states that every C-function
is generalized Lipschitzian in @. Problems relating to HAUSDORFF measure
suggest an extension of the preceding definition to continuous mappings, as
follows. Given a metric space M, let 7': @ — M be a continuous mapping
from the unit square @ into 3. For subsets F of @, put «(Z, T} equal to the
least upper bound of the distance in M between the images Tp and Tq of
two points p and ¢ in E; in other words, w(F, T) is the diameter of TE. Then
the mapping 7 is termed generalized Lipschitzian in ¢ — or, more explicitly,
generalized Lipschitzian in @ with function @ —if @ is a real-valued, non-
negative, summable function on ¢ such that

w(s, T) < {//(.Ddu ",

for every oriented square s in Q. If 7 is generalized Lipschitzian in ¢ with
function @ and ¥ is any real-valued summable function on ¢ such that
@ < ¥ on @, then T is clearly generalized Lipschitzian in ¢ with function ¥.

7. — Given a continuous mapping T: @ — M as in section 6, and a set X
in @, H(TE) will denote the two-dimensional HAUSDORFF measure of the
image TFE of ¥ in M under 7. Explicitly, for a subset ¢ of M, H2(e) is defined
as follows. Given a positive number ¢, let ¢, ..., ¢,, ... be a countable family
of subsets of 3 whose union covers ¢, and such that the diameter d(e,) of
each ¢, is less than . The greatest lower bound of (w/4) > d(e,)? for all such

coverings of ¢ is denoted by H(e). (This quantity may be equal to + co.)
If & decreases, then Hz2(e¢) does not decrease. Hence as & converges to zero,
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Hi(e) converges to a limit (possibly -+ co) which is, by definition, the two-
dimensional HAUSDORFF measure H2(e) of the set ¢ in M,

Let o be the generic notation. for a (finite or infinite) system of non-over-
lapping oriented squares s in @ (see section 1). The mapping 7' in termed

BVH?-in~@~(of ~boundedvariation relative t6 two-dimensional HAUSDORFT
measure) if there exists a finite constant K such that 2 H(Ts), s€ o, is less
than K for every system ¢. The mapping 7 is termed ACH:? in @ (absolutely
continuous relative to two-dimensional HAUSDORFF measvre) if H2(TQ)< -+ co
and for every positive number & there exists a positive number § such that
> H(Ts), s€ o, is less than ¢ for every system ¢ such that the sum of the
areas of the squares s in ¢ is less than6. It is easy to show. that the property
ACH® in @ implies the property BVH: in @ (cf. [5, IIT1.1.3]).

. 8. - Lemma. If the mapping T: @ — M is generalized Lipschitzian
in @, then T is ACH? in Q. ‘ .

The proof is immediate. Let § be any oriented square in . For each
natural number # let o, be a subdivision of § into n? congruent non-over-
lapping oriented squares s. If & is any positive number it follows from the
uniform continuity of 7' on  that there is an integer N such that o(s, TY<<e
for s€ 0, n> N. Since clearly 7S ¢ UTs, s€ o,, one finds that, for n>N.

HY(TS) <aft 3 ofs, T)* <aft 3 || ddudo =aps [[ Gauav,
) s€a, s€oy g 5
if T is generalize'd Lipschitzian in @ with function ®. Since the right-most
member of these inequalities is independent of &, it follows that

HA(TS) <7j4 //@du dv ,
and the fact that 7' is ACH? is now obvious.

9. - Given a continuous mapping T': @ — M as in section 6, suppose there
is a positive number ¢ and a non-negative summable function ¢ defined cn Q
such that ' )

w(s, T) < {//gv da do }1‘!2

for every oriented square s in @ having edge less than §. Let N be the first
integer greater than 1/, and consider any oriented square Sin Q. If p and ¢
are arbitrary points in 8, one can find a sequence containing % < ¥ non-over-
lapping oriented squares s, in § each with edge less than ¢ and. such that 8
contains p, s, contains ¢, and s; and s;., have common boundary points for
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1<j<n—1. Then the distance between Tp and T'q is clearly dominated by

| Zw(sﬂ T)<Z {/’/‘(pdudq; }11’2<i\71fz{[/ o du dv }1/2,
T e AR

1

and, consequently,
| (S, T)<l\71/2{ //fpdud@lw

In other words, 7 is generalized Lipschitzian in @ with function Neg.

10. - Given a continuous mapping T: @ — M which is generalized Lip-
schitzian in @ with function @ (see section 6). Let » be an oriented rectangle
in @ whose length does not exceed N times its width. If p and ¢ are arbitrary
points in 7, one can find a sequence containing # < N non-overla.pping oriented
squares s; in » such that s, contains p, s, contains ¢, and s; and s;+, have
common boundary for 1 <j<<n—1. The reasoning used above now shows
that

w(r, T) < Nz {]:,.Q)du ” }1/2 .

11. - Let 7: Q — M Dbe a continuous mapping from the unit square Q
into a metric space M (see section 6). Extend the definition of T' by re-
flections to obtain a continuous periodic mapping T*: E, — M from the
TFRuclidean two-space I, into 3. Explicitly, the extension T* may be de-
scribed as follows: Denote by @* the square —1 <wu, v << -1, Then for
(1, v) € Q%

[ T(u, v) it (u, v) eQ,
T(—u, v) it (—u,v) €@,
T—u,—7) if (—u,—2)EQ,
T (1, —v) it (w,—v) €@.

TH(u, v) =

For an arbitrary point (u,v) in K, there exist unique even integers ¢, j such
that (u—4, v—j) belongs to Q% and T¥*u,v) = T*u—14, v—j). Now
suppose that T': @ — M is generalized Lipschitzian in @ with function @.
Extend the definition of @ by the same method as that used to extend the
definition of T, to obtain a non-negative function @* defined in Z, and sum-
mable on any compact set in E,. Is the extended mapping T*: E, — M
now generalized Lipschitzian with the extended function @*% — that is, if s
is any oriented square in E,, does it follow that

o, 79 <{ [[ &% audn | 1

21 - Rivisia di Matemalica
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The answer to this question is not known to the writers, but there is the
following result.

Lemma. Under the assumptions and definitions stated above, the exten-
ded mapping T*: E, — M is generalized Lipschitzian with function 2@+,

Proof:—A-square-in-F;-of the form < uw <3 FITEHL y'—}— 1 where

¢ and j are integers is termed an elementary square. If an oriented square §
in B, is wholly contained in some elementary square, then it is clear that

(S, T#) <{ff &% du do }1/2 <21/2{ //@*dud’u}llz )
g e
If an-oriented square § contains an elementary s quare s, then one has

w(8, T*) = w(s, T%) <{[f@“‘ du do }1/'-’ <21/2{‘/‘/ &* dudyp }1/2 '
s ¢ 7

There remains only the case when the oriented square § in #, neither is con-
tained in nor contains an elementary square; then § contains interior points
of not fewer than two and not more than six elementary squares. If r denotes
the largest rectangle in § which is contained in just one of the elementary
squares which § meets, it is seen that the length of » does not exceed 2 times
its width, and w(T* 8) = w(T* 7). From the preceding section it follows
that

o(T*, 8) = w(T*, r) < 242 { /f@*dudv }1/2 <21/2{[f@* dudv}]!2 .
- S
Thus the lemma is established.

12. ~ The remarks made in the preceding sections concerning continuous
mappings from the unit square @ into some metric space M clearly apply
equally well to a real-valued and continuous function f defined on @, since
one may consider the special continuous mapping « = f(u, v), (u, v) € Q, from
@ into-Euclidean one-space (see section 6). Naturally there arises the question
of the scope of the class of generalized Lipschitzian functions. The following
lemma yields some information in this respect.

Lemma. Let the continuous function fu, v), (u,v)€ @, be generalized
Lipschitzian in the unit square . Then the following hold: :

(i) the function f is ACT in @ (see section 1);
(i) the squares of the first partial derivatives fuy fo ave summable in Q;
(iii) the function f has a complete differential almost everywhere in @.

Proof. In view of the lemma in section 11, no generality is lost if one
assumes that the definition of f is extended to the entire plane and that the
extended f is generalized Lipschitzian in B,. TLet r: a <u < b, e <v<<d be
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any closed oriented rectangle in F,. For ¢<v<d, denote by V,a,bd, v, f)
the total variation of f(u,») as a function of % on ¢ < u < b, where the value
- oo is to be used if f(u,v) is not of bounded variation on a <u < b for any
given v. If V,(a, b, v, f), ¢ <v<d, is summable, put

d

f)“/ ua9blv:f)d0:
otherwise, set W,(r, f) = -+ co. Define W,(r,f) in a similar way by inter-
changing the roles of » and ». In [5, I11.2.55, IT1.2.64] it is shown that the
function f is ACT in @ if and only if both of the rectangle functions W, (», 1)
and W.(», f), » © @, are absolutely continuous in @ [5, IT1.1.2]. Tt is presently
shown that W,(», f), r< @, is absolutely continuous in ¢. Of course, the
proof for W.(r, f), < @, is entirely analogous, and so part (i} of the lemma
is established.
For any positive numbe1 h, define (cf [5, IIT1.2.65])

e, 1) = o j ] fu+ & o+ asdy.
~-h —h
The integral mean f, has continuous partial derivatives of the first order
[5, I11.2.66]. In particular,

1) 2’;’;—;—,;2f[f<u+h, o+ ) —flu—h, v+ 1) dn.

Since f is by assumption generalized Lipschitzian with some function @ one
has, for —h <y <h,

h )3

ot dy v k) —fu—t, v )| <{ [ [ St e ot pacas}”.
-h h
The bound on the right does not depend upon # in — % <<% < h; consequently
one obtaing from (1) the estimate

bfh

@) | 2 <{5;2‘/?‘/‘hq3(u o, v p)da dﬁ}ll2

~h -k

For any oriented rectangle »: a<<wu<b, c<v<d, in E,, let W, f,) be
defined in the same manner as W,(r, f). Since f, has continuous first partial
derivatives, it follows that

3) W, 1,) ff’ ] dudv .
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By the HOLDER inequality and the theorem of FUBINI one obtaing from (2)
and (3) the relations

1/2

Wy f2) <f//l b—f"{gdudv}ﬂﬁlr < .

ia

du d@} [r]2 <

f//Lu -@(“ +oy v+ f)dedp

-h —h

2

14h~[ “ f@(“+% ”Jr(})dudv}drf.dﬁ}m[r i

~h —h

where |r| denotes the area of the rectangle ». TLet 5, denote the oriented
rectangle ¢ —h <u<b-+h c—h<v<d--h Then

i/2 .

(4) 4 W.a(ry f2) <{ [/ D(u, v) du dv }1/2] 7

Since f, converges to f um’formly on r and 7, converges to » as  tends to zero
113 follows from [5, ITI. 2.53] that

(5) Wu(r, f) <lminf W00, f,), lim // D dudv = [[(Z) dudv .

A0 h—0 ‘r"
A
Relations (4) and (5) imply that
( /2
6 W, fy<{ [[ @anaw 1,

|12

Now consider any finite system of oriented rectangles #,, ..., 7, in @ whose
interiors are pairwise disjoint. In view of relation (6), the HOLDER inequa-
lity yields :

j;zll WTu(ij f) < él {/f@ d’ltdl/ J, ,,.j

12<

:'
f” ”'@ ll/2j i 11/ I/f 2 » 1/2
du dv @dudv
SR P 2 L2l
This reveals that W,(r;f), »r < @, is absolutely continuous [6, ITT1.1.2]. Thus
assertion (i) of the lemma is established.

Next, let (u,v) be any point in @ where

2 2 )
M 4%/ / Pt ey v+ f) dndf o Plu, v) -

-e -8



Lipschiteian transformations 297

For real numbers %, k such that g2 = h* - k2 > 0, let s, be the closed oriented
square with center (u,v) and side length 2p. Then

t ¥ 2] J

" fa
?;f(«;[ Sy JES R Ny ) - f(ae,-) li (-85 {mf/.«@dud'" ];1'“
8 v

0

and, consequently,

e 4+ kv + & — flu, v)]

<o X [ pana }”2
0 \41492j au U.

8

(8)

o

2

From (7) and (8) it follows that

9 lim sup | Fw + ke v + )~ f(u, v)]

o0+ ¢

< 2D(u, v)Ve,

Now relation (7), and consequently relation (9), hold almost everywhere in
the square . Since D(u, v)¥2, (u, v) € @, is summable, it follows by a well
known result of RADEMACHER [4] that f has a total differential almost every-
where in . This establishes part (iii) of the lemma. Moreover, the first
partials of f exist almost everywhere in ¢ and are measurable. From relation
(9) one obtains |f.(u, v)| <2D(u, v)V2, |f.(u, v)| <2D(u, v)V2, almost every-
where in Q. Thus {2 and f2 are summable in @, and. part (ii) of the lemma
is verified. This completes the proof.

13. — The preceding result may be interpreted as showing that the gene-
ralized Lipschitzian functions represent a LurEsGUE class I°*° in a certain
sense. It would be of interest to determine further properties (beyond those
established in the lemma) which may completely characterize generalized
Lipschitzian funetions. In particular, the C-functions of CALDERON (see
section 3) may be profitably studied from this point of view. One may ask,
for instance: is every generalized Lipschitzian function also a C-function?

14. - One observes that the definition of a generalized Lipschitzian function
or transformation given in section 6 is not independent of the choice of the
coordinate system, since it requires a certain inequality to hold only for
oriented squares — that is, for s‘quares whose sides are parallel to the respective
coordinate axes. To overcome this defect certain plausible eonditions are pre-
sently introduced, and their relationships to the generalized Lipschitzian
concept are explored. ' '
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15. — Let T: Q — M be a continuous mapping from the unit square Q
into a metric space M, as in section 6. Then 7T is said to satisfy condition C,
in @ —or; more explicitly, condition C, in @ with function ¥ -—if ¥is a
real-valued, non-negative, summable function on ¢ such that

o(s* T) < {/f&”dud@ }1/2

for every square s* — oriented or not —in Q.

It is obvious that if 7 satisfies condition C, in @ with function ¥ then T
is also generalized Lipschitzian in @ with function ¥, However, the simplest
examples show that T may be generalized Lipschitzian in @ with function @,
but not satisfy condition C, in @ with function @. Naturally the following
question arises. If a mapping 7: Q — M is generalized Lipschitzian in @
does it also satisfy condition C, in Q2 If so, and if 7T'is generalized Lipschitzian
in @ with function @ how may a function ¥ be related to & so that T satisfies
condition C, in Q with function ¥? Also, it T': @ — B satisfies condition C,
in @, will its extension T*: E, — M described in section 11 satisfy con-
dition C, in Z,?

16. - Let 7: @ — M be a continuous mapping as in section 15. Then 7T
is said to satisfy condition C, in @ —or, more explicitly, condition G, in @
with function y —if y is a real-valued, non negative, summable function
on @ such that

7~

o(d, T) <{ // ydudo Im

a
for every circular disc d in Q. If T satisfies condition C, in @, does it satisfy
condition C, in Q? Is it generalized Lipschitzian in Q2 Does a mapping T’
which is generalized Lipschitzian in satisfy condition C,? There is the
following result.

Lemma. If T: @ — M satisfies condition G, in @ with function ¥,
then T satisfies condition C, in  with function 4%, .

Proof. Let d be a disc in @ with center p. If qis any other point in d,
_ the square s* with diagonal pg is contained in d, and consequently the distance

between Tp and Tq does not exceed { [/ D dude }1/2, which in turn is domi-
nated by { / / ¥audv }1/2. From this it follows that
d
o@, my<2{ [[ waudo }'*
d

and the lemma is established. ;



Lipschitzian transformations 299

If y(u, v), (#,?)€ @ is any C-function (see section 3), the method of CAL-
DERON may be used to show that the mapping @ = f(u, v), (4, v) € @, from @
into E, satisfies both conditions C, and C, in @.

17. - Given a mapping T':-Q — M as in section 15, one may without loss
of generality assume that the definition of 7' has been extended by reflections
to the entire Euclidean plane F, (see section 11). Let o be a positive number
and p any point in E,. Put I (p) equal to the least upper bound of the
ratio of the distance (I'p, Tq) in M between Tp and T'q to the distance (p, q)
in E, between p and ¢ for all points ¢ distinet from p whose distance from p
does not exceed g. For fixed g, M,(p), p € E., is clearly lower semi-continuous.
As o decreases, M, does not increase. It is readily seen that

Hm M (p) — lim sup L2219

0—>04+ @a—or PG
Now suppose there is a positive number g such that M:(p), pE€ @, is sum-
mable. When this condition is satisfied, the mapping T is said to satisfy
condition C, in @. Consider any square §* in I, — oriented or not — whose
diameter d does not exceed p. Let p, ¢, be any three points in s*. Then
clearly (Tq, Tr) < (Tq, Tp) + (Tp, Tr) < M,(p)(g, p) + M,(p)(p, r) <2dM ()
and hence w(s*, T) <2dMM,(p), p € s*. Squaring this relation and integrating
over the square s* one finds ‘

o(s*, T) <81/2{ // 2 du dv}llz.

o

s¥

The reasoning used in section 9 may now be employed to show that, for a
suitable constant N depending only on g, 7T satisfies condition C; in @
with funection NM:. Thus the following result has been established (see
sections 15, 16).

Lemma. If T: Q — M is a continuous mapping satisfying condition C,
in @, then T also satisfies condition C; and C, in Q.

18. — Given a non-negative summable function @ in @, one may without
loss of generality assume that the definition of @ has been extended by re-
flections to the entire Buclidean plane E, (see section 11). Let p be a positive
number and p any point in E,. Put N, (p, P) equal to the least upper

bound of
: /] @ du dv
JJ o 1s]

8§

for all oriented square s with center p and edge not exceeding 2p. For fixed o,
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N,(p, D), pE€ H;, is clearly lower semi-continuous. As o decreases, Ne; does
not increase. It is easﬂy seen that :

lim N,(p, @) = P(p) almost everywhere.

o=>0+

If %k is any positive constant, then clearly N,(p, kD) = kN,(p, D), pE B,.
The function @ is said to satisfy condition C whenever there exists some posi-
tive constant ¢ such that N (p, @), p€ @, is summable,

Now suppose that a nm,pi)incr T: @ — M is generalized Lipschitzian in @
with function @ satistying condition ¢. One may without loss of generality
assume that the definition of 7' has been extended by reflections to the entire
Euclidean plane B,, and that the extended mapping is generalized Lipschitzian
with function 2@ (see section 11). TLet p be an arbitrary point of %, and ¢
any point distinet from p whose distance d from p does not exceed o ; then ¢
lies in the oriented square s with center p and side length 2d. Consequently

(I'p, Tq) (s, T) [ Pau dv )z
< Ri1/2 < 81/ 1/2
o < e <8 // ST <8N, @),

8

Thus
M, (p) <8N,(p, D), pER,,

and M:(p), pE€ Q, is summable if N,(p, D), p€ Q, is summable. Combining
this fact the result in section 17, one obtains the following.

Lemma. Let T': @ — M be a continuous mapping which is generalized
Lipschitzian in @ with function @ satisfying condition C. Then T also satis-
fies condition C;, C,, C, in @.

19. - For the applications to be made in the next section the following
fact is needed.

Lemma. Let T: Q — FE, be a continuous mapping from the unit square
Q. into Euclidean three-space (v,, @, #,) given by formulas T: = w;(U, v),
(w,v)€ @, (1 =1,2,3). Then T is a generalized Lipschitzian mapping in @
if and only if each of the functions ; is generalized Lipschitzian in @ for
i =1,2,3." ,

Proof. If T is generalized Lipschitzian in @, then each w; is also gene-
ralized Lipschitzian in @ because, on any oriented square s in @, one has
o(s, ;) < (s, T) for ¢ =1,2,3. On the other hand, if each w; is generalized
Lipschitzian in @ with function @, (i =1, 2, 3), then the reader will verify
at once that T is generalized Lipschitzian in @ with function D, -+ D, - D,

20. - This Note concludes with an application of the preceding results
to extend the theorem of CESART described in section 1 in both of the di-
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rections indicated in section 2. Let @(w, v), (%, v) € Q, be any funetion which
is ACT in @ (see section 1) and each of whose first partial derivatives belongs
to the LEBESGUE class L*** for some positive constant «. Define

. Jf17 0-<t< 1y
(p()—l t2+a, 1<t< —‘}“00.

The reader will verify that the function « then satisfies conditions (i) and (ii)
of section 3 for this choice of ¢ — that is, # is a C-function, and consequently
is generalized Lipschitzian in @ (see section 6). In view of the lemma in
section 19, it is now clear that a continuous mapping T possessing the pro-
perties required by CESARI in [3], and stated in seetion 1 (i) (ii), is generalized
Lipschitzian in ¢. Since in the plane two-dimensional HAUSDORFF measure
coincides with two-dimensional LEBESGUE measure, the theorem of CESARI sta-
ted in section 1 is seen to be a very special case of the lemma in section 8.
In other words, the lemma in section 8 is a generalization of the theorem of
CusArI in the two directions: the Euclidean plane azy of CESArT has been
replaced by an arbitrary metric space and the requirement that the first par-
tial derivatives belong to the LEBESGUE classs L7 7% for some positive number
o has been reduced to the requirement that 7' be a generalized Lipschitzian
mapping.
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