Le varietà V_5 i cui spazi tangenti ricoprono una varietà W di dimensione inferiore alla ordinaria. (**)

Parte II.

$\S 4. - V_5$ non sviluppabili la cui W ha dimensione inferiore a dieci.

6. – Prima di occuparci delle V_5 di cui si dice nel titolo di questo § 4, vogliamo esaminare quelle varietà V_k che soddisfano ad un sistema di equazioni di Laplace tale che il sistema delle quadriche associate sia costituito dalle quadriche dello S_{k-1} che passano per uno S_{k-l-1} con l>1 (¹), oppure contenga un siffatto sistema di quadriche. Ci limiteremo a trattare il caso k=5, l=2 (²) facendo però osservare che casi generali si possono trattare sulla base di considerazioni sostauzialmente eguali a quelle che svolgeremo. Ci accontenteremo di dare gli enunciati relativi ai casi più generali.

Come è noto le equazioni di Laplace, linearmente indipendenti, a cui soddisfa presentemente la V_5 , sono in numero di 9, 10 od 11. Il caso in cui le equazioni sono 9 è stato trattato dal Terracini [op. cit. in (²), pag. 435 della Parte I] e conduce ad S_1 -coni proiettanti da una retta una V_3 generica (non soddisfacente cioè a nessuna equazione di Laplace). Nel caso in cui le equazioni sono 10 od 11 si sa intanto che 9 di esse possono scriversi (con una opportuna scelta dei parametri):

(59)
$$\begin{cases} x^{(55)} = 0, & x^{(44)} = 0, \\ x^{(5i)} = \sum_{1}^{5} a_{ir}x^{(r)} + a_{ix}, & (i = 1, 2, 3, 4), \\ x^{(4i)} = \sum_{1}^{5} b_{ir}x^{(r)} + b_{ix}, & (i = 1, 2, 3). \end{cases}$$

^(*) Indirizzo: Istituto Matematico S. PINCHERLE, Università, Bologna (Italia).

^(**) La Parte I del presente lavoro è apparsa in questa Rivista 2, 435-462 (1951).

⁽¹⁾ Ossia quei sistemi di quadriche il cui sistema apolare duale è costituito di S_{i-1} -coni con l' S_{i-1} -vertice in comune. (Si veda \widehat{l} n. 3.)

⁽²⁾ Si ricordi che i casi l=k, l=k-1 danno luogo a varietà banali [cfr. Terracini, op. cit. nell'annotazione (2) della Parte I, questa Rivista, 2, 435-462 (1951)]. Il caso k=5, l=3 rientra in quelli considerati dal Terracini nel lavoro citato ora.

Ora formiamo le conseguenze delle (59) che si ottengono eguagliando le derivate terze $x^{(5ij)} = x^{(5ji)}$, $(i \neq j = 1, 2, 3)$, $x^{(5ij)} = x^{(4ji)}$ ed infine $x^{(45i)} = x^{(4i5)}$, (i = 1, 2, 3), e tenendo conto delle (59) stesse. Le forme quadratiche associate a quelle nuove equazioni sono quelle che si ottengono annullando i minori delle matrici:

(60')
$$\begin{vmatrix} \theta_1 & \theta_2 & \theta_3 \\ \frac{3}{1}r b_{1r}\theta_r & \frac{3}{1}r b_{2r}\theta_r & \frac{3}{1}r b_{3r}\theta_r \end{vmatrix},$$

ed inoltre le seguenti

(61)
$$\theta_i \left[\sum_{r}^{3} a_{4r} \theta_r \right] = 0 , \qquad (i = 1, 2, 3).$$

Per ciò che riguarda le (60), (60') osserviamo che, in base a considerazioni già svolte nel n. 5 (3), le forme quadratiche (60) svaniscono tutte identicamente, oppure due almeno sono indipendenti, come pure le (60'). Quanto alle (61), la matrice dei loro coefficienti è

$$\begin{vmatrix} a_{41} & a_{42} & a_{43} & 0 & 0 & 0 \\ 0 & a_{41} & 0 & a_{42} & a_{43} & 0 \\ 0 & 0 & a_{41} & 0 & a_{52} & a_{43} \end{vmatrix}$$

e si vede così che quelle forme svaniscono tutte oppure sono indipendenti. Si deve dunque concludere che se le equazioni di Laplace l.i. sono 10, quelle 9 fra di esse della forma (59) costituiscono un sistema chiuso e pertanto la V_5 è attualmente un S_1 -cono proiettante una V_3 soddisfacente ad una equazione di Laplace. Se le e.d.L.l.i. sono 11, cinque fra di esse, e precisamente le

$$\begin{cases} x^{(55)} = 0, \\ x^{(5i)} = \sum_{1}^{5} a_{ir} x^{(r)} + a_{i} x, \end{cases}$$
 $(i = 1, 2, 3, 4).$

oppure le

$$\begin{cases} x^{(44)} = 0, \\ x^{(4i)} = \sum_{1}^{5} b_{ir} x^{(r)} + b_{i} x, \\ x^{(45)} = \sum_{1}^{5} a_{4r} x^{(r)} + a_{4} x, \end{cases}$$
 $(i = 1, 2, 3),$

⁽³⁾ Cioè considerando le omografie $\theta_i'=\sum_{i=1}^3 a_{ir}\theta_r,\; \theta_i'=\sum_{i=1}^3 b_{ir}\theta_r,\; (i=1,\,2,\,3).$

costituiscono un sistema chiuso. In questo caso la V_5 è un cono proiettante da un punto una V_4 sviluppabile che soddisfa a 6 e.d.L.l.i. [dei tipi determinati in Terracini, op. cit . in (2)] (4).

Riguardo al caso di k ed l qualunque ci limiteremo a rilevare che la V_k deve soddisfare ad equazioni di Laplace fra le quali ve ne sono $lk-\frac{l(l-1)}{2}$ costituenti un sistema a caratteristica di tipo parabolico [cfr. Bompiani, op. cit. in (22), Parte I del presente lavoro, pag. 444]. Ragionando come prima si vede che, se oltre alle predette equazioni, la V_k soddisfa ad altre $\delta < k-l-1$ e.d.L.l.i., le $lk-\frac{l(l-1)}{2}$ prime costituiscono un sistema chiuso e la V_k è allora un S_{l-1} -cono proiettante una V_{k-l} che soddisfa a δ equazioni di Laplace l.i. Ora se si tiene presente il teorema del n. 3, si può concludere:

Le varietà V_k per le quali la varietà W degli spazi tangenti ha dimensione 2k-l $(k-2\geqslant l\geqslant 2)$ e che rappresentano d'equaziosi di Laplace linearmente indipendenti con $lk-\frac{l(l-1)}{2}\leqslant d\leqslant lk-\frac{l(l-1)}{2}+k-l-2$ sono S_{l-1} -coni proiettanti una V_{k-l} che soddisfa a d-lk+l(l-1) equazioni di Laplace l.i..

Terminiamo osservando che i metodi del n. 5 si presterebbero, opportunamente completati, ad approfondire lo studio delle V_k soddisfacenti a sistemi di equazioni a caratteristica di tipo parabolico; ma su ciò qui non insisto.

7. – Considereremo in questo numero le V_5 che soddisfano a quei sistemi di e.d.L. i cui sistemi lineari di quadriche associate hanno per sistema apolare duale ∞^6 , ∞^5 od ∞^4 quadriche dell' S_4 fra le quali ∞^5 , ∞^4 od ∞^3 sono S_1 -coni col vertice in comune. Si hanno, rispettivamente, in quei casi V_5 soddisfacenti a d=8, 9 oppure 10 e.d.L.l.i.. Incominciamo col considerare il caso d=8; conviene distinguere tre possibilità:

(a) La generica quadrica del sistema ∞^5 sopradetto ha due punti distinti in comune con $1^{\circ}S_1$ -vertice degli ∞^4 S_1 -coni del sistema. (b) La generica quadrica è tangente all' S_1 -vertice. (c) La generica quadrica contiene $1^{\circ}S_1$ -vertice Indicheremo, col Terracini, con A_{λ} l'operatore differenziale:

$$A_h = \sum_{1}^{5} a_{hr} \frac{\partial}{\partial \tau_r},$$
 $(h = 1, 2, 3, 4, 5),$

e supporremo sempre che gli operatori A che interverranno in seguito siano indipendenti (linearmente). Si vede senza difficoltà che nel caso (a) la V_5 sod-

⁽⁴⁾ Le verifiche delle proposizioni che enunceremo d'ora in poi si dovranno intendere fatte anche se non lo diremo esplicitamente.

disfa alle equazioni (5):

(62)
$$\begin{cases} A_{l}A_{l}x + \sum_{1}^{5} g_{llr}x^{(r)} + g_{ll}x = 0, & (l = 1, 2), \\ A_{l}A_{m}x + \sum_{1}^{5} g_{lmr}x^{(r)} + g_{lm}x = 0, & (l = 1, 2; m = 3, 4, 5). \end{cases}$$

Nel caso (b) la V₅ soddisfa alle:

(63)
$$\begin{cases} A_1 A_1 x + \sum_{r}^{5} g_{11r} x^{(r)} + g_{11} x = 0, \\ A_1 A_2 x + \sum_{1}^{5} g_{12r} x^{(r)} + g_{12} x = 0, \\ A_1 A_m x + \varrho_{lm} A_2 A_2 x + \sum_{1}^{5} g_{lmr} x^{(r)} + g_{lm} x = 0, \end{cases}$$
 $(l = 1, 2; m = 3, 4, 5).$

Infine nel caso (e) la V₅ slddisfa alle:

$$\begin{cases} A_{1}A_{m}x + \sum_{1}^{5} g_{1mr}x^{(r)} + g_{1m}x = 0, & (l, m = 1, 2), \\ A_{h}A_{k}x + \varrho_{hk}A_{1}A_{3}x + \sum_{1}^{5} g_{hkr}x^{(r)} + g_{hk}x = 0, & (h = 1, 2; k = 4, 5), \\ A_{2}A_{3}x + \varrho_{23}A_{1}A_{3}x + \sum_{1}^{5} g_{23r}x^{(r)} + g_{23}x = 0. & \end{cases}$$

Sulle equazioni dei sistemi (62), (63), (64) si opererà in modo del tutto analogo a quello usato dal Terracini nella Nota II del suo lavoro citato nella Parte I del presente lavoro, annotazione (2). Ricordiamo che si tratta di formare le condizioni di integrabilità per le equazioni dei sistemi scritti sopra applicando ad esse opportunamente gli operatori A e confrontando poi i risultati. Dalla considerazione delle quadriche associate alle nuove equazioni che si ottengono, le quali quadriche debbono appartenere al sistema lineare delle quadriche associate alle equazioni di partenza (6), si deduce che il sistema

$$(65) A_1 \sigma = A_2 \sigma = 0$$

⁽⁵⁾ Si perviene alla forma scritta, per le equazioni a cui la V_5 deve soddisfare, con una opportuna scelta del riferimento, nello S_4 del sistema lineare delle quadriche associate. Questa osservazione valga anche per il seguito.

 $^{^{(6)}}$ Si ricordi che la V_5 soddisfa soltanto alle equazioni dei sistemi (62), (63), (64) ed alle loro combinazioni lineari.

è completo e quindi si possono prendere come nuovi parametri σ_1 , σ_2 , σ_3 tre soluzioni indipendenti del sistema (65). I sistemi (62), (63) si possono così trasformare in altri due che si ottengono eguagliando a zero otto combinazioni linearmente indipendenti delle $x^{(14)}$, $x^{(24)}$, $x^{(34)}$, $x^{(15)}$, $x^{(25)}$, $x^{(35)}$, $x^{(44)}$, $x^{(45)}$, $x^{(55)}$, delle derivate prime e della x. Il sistema (64) diventa poi

(64')
$$\begin{cases} x^{(44)} \circ x^{(45)} \circ x^{(55)} \circ 0, \\ x^{(hk)} + \varrho_{hk} x^{(13)} \circ 0, \\ x^{(23)} + \varrho_{23} x^{(13)} \circ 0, \end{cases} \qquad (h = 1, 2; k = 4, 5),$$

dove, come d'uso, il simbolo ∞ sta ad indicare che il primo membro differisce dal secondo per una espressione lineare ed omogenea in x e le sue derivate prime.

Ragionamenti identici a quelli che usa il Terracini nel lavoro indicato dianzi provano poi che le V_5 sono dei tipi seguenti: V_5 luogo di ∞^3 superficie non sviluppabili oppure sviluppabili, situate negli S_3 di un S_2 -cono proiettante una generica V_3 , e V_5 luogo di ∞^3 S_2 dotata di S_6 tangente fisso lungo ogni S_2 . Non abbiamo ripetuto i ragionamenti del Terracini poichè essi sono ampiamente svolti nel suo lavoro citato.

Veniamo ora ai casi d=9 e d=10; attualmente vi sono 8 fra le 9 o 10 equazioni l.i. che sono della forma (62), (63) oppure (64), distinguendo anche ora le possibilità (a), (b), (c). Seguiamo ora il seguente procedimento: incominciamo col formare le conseguenze delle equazioni dei sistemi (62), (63) o (64) nello stesso modo di sopra e poi consideriamo le quadriche associate a quelle conseguenze. Si vede che quelle quadriche o appartengono al sistema lineare di quelle associate alle equazioni del sistema (62), (63) o (64) oppure ve ne sono almeno tre di linearmente indipendenti fra loro e da quelle. Poichè nei casi che ci interessano, oltre alle equazioni dei sistemi (62), (63) o (64) la V_5 soddisfa soltanto ad una o due altre equazioni l.i. si può concludere anche ora che il sistema (65) è completo ed effettuare il cambiamento di parametri. Effettuatolo, si riprenderanno i ragionamenti di prima e si perverrà alle seguenti conclusioni, che si verificano poi agevolmente. Le V5 sono attualmente dei seguenti tipi: V_5 luogo di ∞ 3 superficie (7) situate negli S_3 di un S_2 -cono proiettante una V_3 che soddisfa ad una oppure a due equazioni di Laplace l.i.; V_5 luogo $di \infty^3$ superficie situate negli S_3 di un S_2 -cono proiettante una V_4 rigata sviluppabile che soddisfa a 6 equazioni di Laplace l.i.; V_5 luogo di ∞ ³ piani con S_6 tangente fisso lungo ogni piano e soddisfacente ad una o due equazioni di Laplace (indipendenti e non conseguenze di quelle che esprimono la predetta proprietà).

⁽⁷⁾ Non sviluppabili o sviluppabili.

Terminiamo questo n. con osservazioni analoghe a quelle con cui terminammo il n. 6, e cioè facendo rilevare che i risultati conseguiti potrebbero venir estesi senza grandi difficoltà a V_k (k qualunque) soddisfacenti a sistemi di equazioni di Laplace formalmente analoghi a quelli qui considerati (e si tenga presente l'osservazione con cui termina il n. 3). Si perverrebbe a V_k luoghi di superficie dell' S_3 o luoghi di S_2 analoghe alle V_5 ottenute in questo n..

- 8. Esaminiamo qui quelle V_5 che soddisfano ai sistemi di e.d. Laplace aventi un sistema associato tale che il sistema apolare duale sia:
- 1) Un sistema ∞^4 di quadriche contenente le ∞^2 coppie di S_3 di un fascio; e in tal caso la W relativa alla V_5 ha dimensione 9.
- 2) Un sistema ∞^3 di quadriche contenenti le ∞^2 coppie di S_3 di un fascio; e in tal caso la W ha dimensione 8.

Nel caso 1) la V_5 soddisfa a 10 e.d.L.l.i., ad 11 nel caso 2). Anche ora si useranno gli stessi metodi del n. precedente. Incominciamo col caso 1); conviene, per rendere più facili i calcoli, distinguere i seguenti sottocasi: (a_1) Le quadriche del sistema segnano sull' S_2 , base del fascio di S_3 , un fascio di coniche Sono da distinguersi in questo sottocaso gli otto tipi di fasci di coniche, proiettivamente distinti. (b_1) Le quadriche del sistema segnano sul predetto S_2 una conica fissa. Sono da distinguersi ora la conica irriducibile, dalla coppia di rette distinte e dalla retta doppia. (c_1) Le quadriche del sistema passano tutte per $1'S_2$. In ciascuno dei casi elencati conviene scegliere un opportuno riferimento nell' S_4 delle quadriche associate e poi scrivere le equazioni di Laplace dei sistemi relativi ad ogni caso. Come esempio scriviamo il sistema relativo al caso (a_1) , nell'ipotesi che il fascio di coniche abbia quattro punti base distinti:

(66)
$$\begin{cases} A_{l}A_{l}x \otimes 0, & (l = 1, 2, 3), \\ A_{m}A_{n}x + \varrho_{mn}A_{1}A_{2}x + \sigma_{mn}A_{2}A_{3}x \otimes 0, & (m = 1, 2, 3; n = 4, 5), \\ A_{1}A_{3}x + \varrho_{12} A_{1}A_{2}x + \sigma_{13}A_{2}A_{3}x \otimes 0. & \end{cases}$$

Sui sistemi scritti si opererà poi in modo analogo a quello che abbiamo indicato nel n. precedente al fine di dimostrare che il sistema

$$(67) A_1 \sigma = A_2 \sigma = A_3 \sigma = 0$$

è completo (8). Ci si riesce in ogni caso ed allora col cambiamento di para-

⁽⁸⁾ Ad esempio, per il sistema (66): tenendo sempre presente [cfr. Terracini, loc. cit. in (2)] che in ogni equazione si possono scambiare fra loro due operatori A_l , A_m ,

metri $\sigma_1 = \sigma_1(\tau)$, $\sigma_2 = \sigma_2(\tau)$, $\sigma_3 = \tau_3$, $\sigma_4 = \tau_4$, $\sigma_5 = \tau_5$, dove σ_1 ; σ_2 sono due integrali indipendenti di (67), i sistemi di cui s'è detto diventano: nel caso (a_1) dieci combinazioni lineari, linearmente indipendenti delle $x^{(ij)}$, delle derivate prima e delle x, con (i, j) = (13), (14), (15), (23), (24), (25), (33), (34), (35), (44), (45), (55); nel caso (b_1) , come nel caso (a_1) , ma cinque delle combinazioni contengono solo le ultime sei delle derivate seconde scritte prima; nel caso (c_1) infine il sistema contiene le sei equazioni

$$x^{(33)}$$
 or $x^{(34)}$ or $x^{(35)}$ or $x^{(44)}$ or $x^{(45)}$ or $x^{(55)}$ or $x^{(55)}$

Ragionamenti analoghi a quelli che si facevano per i sistemi del n. precedente mostrano che, nei casi (a_1) e (b_1) le V_3 , σ_1 e σ_2 costanti, appartengono al più allo S_5 . Ma nel caso (b_1) è facile vedere, formando le condizioni di integrabilità e tenendo conto che il sistema in esame è chiuso, che quelle V_3 soddisfano a 5 equazioni di Laplace I.i. e quindi stanno in S_4 se non sono ∞^1 di S_2 sviluppabili ordinarie. Continuando poi a ragionare come prima si perviene finalmente alle seguenti conclusioni, che si verificano analiticamente senza difficoltà: Nel caso (a_1) la V_5 è costituita da ∞^2 V_3 situate negli S_5 di un S_4 -cono proiettante una superficie generica $(^4)$; nel caso (b_1) la V_5 è costituita come prima da V_3 ∞^1 di piani sviluppabili ordinarie, oppure è costituita da ∞^2 V_3 situate negli S_4 di un S_1 -cono proiettante una V_4 sviluppabile che soddisfi a 6 equazioni di Laplace 1.i. e sia luogo di ∞^2 S_2 , oppure negli S_4 di una V_5 , ∞^2 di S_4 con S_7 tangente fisso lungo ogni S_4 ; nel caso (c_1) la V_5 è una ∞^2 di S_3 con S_7 tangente fisso lungo ogni S_3 , generica.

Ciò che s'è fatto per il caso 1) si può ripetere, con lievi modificazioni, nel

modificando convenientemente i termini del 1º ordine, si operi con A_1 sulla A_2A_4+ + $\varrho_{24}A_1A_2+$ $\sigma_{24}A_2A_3$, con A_2 su A_1A_4+ $\varrho_{14}A_1A_2+$ $\sigma_{14}A_2A_3$. Le $A_1A_2A_1$, $A_2A_1A_2$ possono venir espresse per mezzo delle $A_2A_1A_1$, $A_1A_2A_2$ ottenute dalle prime fra le (66). Dall'ultima si ricava poi $A_1A_2A_3$ che si sostituirà nella relazione ottenuta facendo la differenza fra le due ricavate prima; si ottiene così una nuova equazione di LAPLACE che deve essere combinazione lineare delle (66). Le quadriche associate alle (66) passano tutte per la retta $A_1\theta=A_2\theta=A_3\theta=0$ e così dovrà accadere della quadrica associata alla nuova equazione; si perviene, tenendo conto di ciò, a dimostrare che la equazione del 1º ordine

$$\sum_{1}^{5} r \left(\sum_{1}^{5} a_{2t} a_{1r}^{(t)} - a_{1t} a_{2r}^{(t)} \right) \frac{\partial \sigma}{\partial r_r} = 0$$

è combinazione lineare delle $A_1\sigma=A\sigma=A_3\sigma=0$. E così via.

^(°) Il sistema lineare delle coniche associate alle equazioni di Laplace I.i. cui soddisfano le V_3 , ha per sistema apolare duale quello che le quadriche di cui si dice in principio del presente n. segnano sull' S_2 base del relativo fascio di S_3 . Analoghi fatti per il caso (b₁).

^{6 -} Rivista di Matematica.

caso 2); ora si debbono distinguere i sottocasi: (a_2) Le quadriche del sistema segnano sull' S_2 base del fascio di S_3 una conica, che potrà essere irriducibile, spezzata in due rette distinte o retta doppia. (b_2) Tutte le quadriche del sistema contengono $1'S_2$. Si perviene ai seguenti dipi di V_5 : V_5 formata da ∞^2 V_3 situate negli S_4 di un S_3 -cono proiettante una superficie generica; V_5 , ∞^2 di S_3 con S_6 tangente fisso lungo ogni S_3 , per altro generica.

- **9.** Ora considereremo i sistemi di d=9, 10, 11 equazioni di Laplace l.i., i cui sistemi di quadriche associate hanno per sistemi apolari duali rispettivamente:
- (a) Il sistema ∞^5 delle quadriche di S_4 passanti per uno S_2 ed uno S_1 , fra loro sghembi.
 - (b) Sistemi ∞4 contenuti nel sistema (a).
- (c) Il sistema ∞^3 di quadriche per due S_2 (non appartenenti ad S_3). I casi (a), (b) forniscono V_5 per cui la W ha dimensione 9, nel caso (c) la W ha dimensione 8.

Nel caso (a) il sistema di equazioni di Laplace a cui soddisfa la V_5 è

(67)
$$\begin{cases} A_1 A_m x \circ 0, & (l, m = 1, 2), \\ A_h A_k x \circ 0, & (h, k = 3, 4, 5), \end{cases}$$

e la varietà stessa è, come ha dimostrato il Terracini la V_5^{10} di S_{11} di C. Segre. Nel caso (b) il sistema contiene le equazioni (67) ed inoltre una equazione del tipo:

(68)
$$\varrho_{13}A_1A_3x + \varrho_{14}A_1A_4x + \varrho_{15}A_1A_5x + \varrho_{23}A_2A_3x + \varrho_{24}A_2A_4x + \varrho_{25}A_2A_5x + 0$$
.

Dimostriamo che [come avviene per il caso del sistema (67) da solo] i sistemi

(69)
$$\begin{cases} A_1 \sigma = A_2 \sigma = 0, \\ A_3 \sigma = A_4 \sigma = A_5 \sigma = 0, \end{cases}$$

sono completi. All'uopo si formino quelle conseguenze delle (67) che occorrono a dimostrare la completezza dei sistemi (69); si esprima poi che le quadriche associate alle conseguenze ottenute sono combinazioni lineari delle quadriche associate alle (67) e dell'unica quadrica associata alla (68). Si vedrà così che in quelle combinazioni di quadriche quella associata alla (68) non può figurare e perciò si potrà ragionare sulle predette conseguenze come se la (68) non ci fosse. Assumendo poi come nuovi parametri

$$\sigma_1=\sigma_1(au)\,, \quad \sigma_2=\sigma_2(au)\,, \quad \sigma_3=\sigma_3(au)\,,$$

tre soluzioni indipendenti del primo dei sistemi (69) e

$$\sigma_4 = \sigma_4(\tau) \;, \qquad \sigma_5 = \sigma_5(\tau) \;,$$

due soluzioni indipendenti del secondo sistema (69), le (67) e la (68) diventano

(70)
$$\begin{cases} x^{(11)} \circ x^{(12)} \circ x^{(13)} \circ x^{(22)} \circ x^{(23)} \circ x^{(33)} \circ 0, \\ x^{(44)} \circ x^{(45)} \circ x^{(55)} \circ 0, \\ \sigma_{13}x^{(13)} + \sigma_{14}x^{(14)} + \sigma_{15}x^{(15)} + \sigma_{23}x^{(23)} + \sigma_{24}x^{(24)} + \sigma_{25}x^{(25)} \circ 0. \end{cases}$$

Si verifica subito, formando le derivate terze che i sistemi nelle due prime righe di (70) sono rispettivamente tali che le derivate seconde sono combinazioni lineari di $x^{(1)}$, $x^{(2)}$, $x^{(3)}$, x soltanto e di e $x^{(4)}$, $x^{(5)}$, x soltanto. La V_5 è dunque attualmente luogo di $\infty^3 S_2$ e di $\infty^2 S_3$ (come la V_5^{10} di C. Segre); se si esamina il ragionamento che conduce il Terracini a dimostrare che la V_5 soddisfacente a tutte e sole le (67) è la V_5^{10} di S_{11} , si può concludere che invece la nostra V_5 sta in S_{10} . Consideriamo poi la V_5' definita dalle

$$y = A \tau_6(\tau_1, \tau_2, \tau_3, \tau_4, \tau_5) + x$$

dove A è un punto fisso ed x è il punto variabile sulla nostra V_5 , mentre $\tau_6(\tau_1, \tau_2, \tau_3, \tau_4, \tau_5)$ soddisfa alle equazioni del sistema (67) e soltanto a quelle. Si vede subito che il punto y descrive una V_5^{10} di C. Segre; concludiamo perciò che la nostra V_5 è una proiezione di quella varietà in S_{10} .

Ragionamenti analoghi a quelli svolti sopra permettono di dimostrare la seguente proposizione, che completa in un certo senso una proposizione del TERRACINI.

Una V_p , con k=p+q (p,q>1), che soddisfa ad un sistema di equazioni di Laplace tale che il relativo sistema di quadriche associate ha per sistema apolare duale il sistema delle quadriche di S_{k-1} che passano per uno S_{p-1} e per uno S_{q-1} fra loro sghembi, oppure un sistema contenuto in quello (di dimensione k-1, almeno) è la V_{p+q} di S_{pq+p+q} di C. Segre oppure una proiezione di quella varietà in uno spazio di dimensione 2k almeno.

Nel primo caso si sa che le equazioni 1.i. del sistema sono in numero di $\frac{1}{2} p(p+1) + \frac{1}{2} q(q+1) = d$; nel secondo quel numero è $d+\alpha$ con $0 < \alpha \le pq - k$.

Dobbiamo ora esaminare (c) del principio di questo n.. Il sistema contiene attualmente 11 equazioni l.i. che si scrivono come segue:

(71)
$$\begin{cases} A_{i}A_{1}x \circ 0, & (i = 1, 2, 3, 4, 5), \\ A_{l}A_{m}x \circ 0, & (l, m = 2, 3), \\ A_{h}A_{k}x \circ 0, & (l, m = 4, 5), \end{cases}$$

Dimostriamo che i sistemi e dipus a la quelle falla di referencia i funda for que

(72) All
$$\sigma = A_2 \sigma = A_3 \sigma = 0$$
,
$$\begin{cases} A_1 \sigma = A_2 \sigma = A_3 \sigma = 0, \\ A_1 \sigma = A_4 \sigma = A_5 \sigma = 0, \\ A_2 \sigma = A_4 \sigma = A_5 \sigma = 0, \end{cases}$$

sono completi. All'uopo osserviamo che le equazioni (71) contengono il gruppo di 6 equazioni

(71')
$$= A_i A_j x \circ 0 , \quad \forall i,j=1,2,3),$$

e anche il gruppo, pure di 6 equazioni (10), di 10 anche il gruppo,

(71")
$$A_{i}A_{j}x \circ 0$$
, $(i,j=1,4,5)$.

Formiamo le conseguenze delle (71') allo stesso modo che per le equazioni della seconda riga di (67), e così pure per le (71"). Considerando le quadriche asso ciate a quelle conseguenze, che debbono essere combinazioni lineari delle quadriche associate alle (71), si vede subito allora che sono soddisfatte le condizioni di completezza dei sistemi. Assumendo i nuovi parametri

$$\sigma_1 = \sigma_1(au) \,, \qquad \sigma_2 = \sigma_2(au) \,,$$

soluzioni del primo sistema (72),

$$\sigma_3 = \sigma_3(\tau)$$
, $\sigma_4 = \sigma_4(\tau)$,

soluzioni del secondo sistema (72) e $\sigma_5 = \tau_5$, le (71) diventano:

(73)
$$\begin{cases} x^{(55)} \circ x^{(54)} \circ x^{(53)} \circ x^{(52)} \circ x^{(51)} \circ 0, \\ x^{(33)} \circ x^{(34)} \circ x^{(44)} \circ 0, \\ x^{(11)} \circ x^{(12)} \circ x^{(22)} \circ 0. \end{cases}$$

Si verifica facilmente che le equazioni della prima riga costituiscono un sistema chiuso e pertanto la nostra V_5 è un S_0 -cono. La forma delle altre 6 equazioni (73) mostra poi che la V_5 è un S_0 -cono projettante una V_4^6 dell' S_8 di C. Segre.

Anche il precedente risultato può venir convenientemente esteso.

⁽¹⁰⁾ Avente in comune l'equazione $A_1 A_1 x \propto 0$ col primo gruppo.

- 10. L'ultimo tipo di V_5 che ci rimane da esaminare è quello delle V_5 che soddisfano a 10 equazioni di Laplace I.i. (e la cui W ha dimensione 9), quelle equazioni essendo tali che il sistema delle quadriche associate ammette per sistema apolare duale un sistema ∞^4 di quadriche contenente il sistema ∞^3 delle quadriche per due S_2 (non di S_3). Conviene distinguere i seguenti casi:
- (a) La generica quadrica del sistema ∞^4 non passa per il punto comune ai due S_2 .
- b) Tutte le quadriche del sistema passano per il punto comune ai due S_2 , ma una quadrica generica non passa per nessuno degli S_2 .
 - (c) Tutte le quadriche del sistema passano per uno (solo) degli S_2 .

Si formeranno, come nei casi già visti, i sistemi di equazioni di Laplace relativi ai vari casi e conviene distinguere, nel caso (a), sei sottocasi a seconda che le due coniche sezioni della generica quadrica del sistema con i due S_2 sono irriducibili, spezzate in 2 rette distinte, o rette doppie; nel caso (b) si distinguono nove sottocasi, analogamente a quanto s'è fatto per (a), ma distinguendo ancora il caso in cui il punto comune ai due S_2 è semplice o doppio per le coniche sezioni; infine nel caso (c) si hanno tre sottocasi. Non svolgeremo dettagliatamente i calcoli relativi a tutti i diciannove sottocasi e ci limiteremo a considerare:

- 1) Il caso (a) nell'ipotesi di due coniche irriducibili;
- 2) il caso (b) nella stessa ipotesi.

Per tutti gli altri casi si procede in modo perfettamente analogo a quello che esporremo; daremo in ultimo i risultati relativi. Per 1) le 10 equazioni l.i. a cui soddisfa la V_5 si scrivono:

per $i \neq j = 1, 2, 3$, ed i = 2, 3 e poi $i \neq j = 1, 4, 5$ ed i = 4, 5. Come per il sistema (71) si prova che i sistemi (72) sono completi (11) e facendo il cambiamento di parametri si perviene al sistema:

(75)
$$\begin{cases} x^{(15)} \otimes 0, & \forall x^{(35)} \otimes 0, \\ x^{(25)} \otimes 0, & x^{(45)} \otimes 0, \\ x^{(ij)} + \varrho_{ij} x^{(55)} \otimes 0, & (i, j = 3, 4), \\ x^{(hh)} + \varrho_{hk} x^{(55)} \otimes 0, & (h, k = 1, 2), \end{cases}$$

(11) Si veda anche Terracini, loc. cit. in (2), Nota III, pag. 12

<u>era securit (st.) em electroma alterance e consultad foto o construit d</u>

le ϱ_{ii} , come pure le ϱ_{hk} essendo non tutte nulle. Formando le derivate terze in tutti i modi e confrontando si vede che (75) essendo chiuso deve ridursi alla forma seguente:

$$\begin{cases} x^{(5i)} = a_{5i}x^{(5)}, & (i = 3, 4), \\ x^{(ij)} + \varrho_{ij}x^{(55)} = a_{ij}x^{(3)} + b_{ij}x^{(4)} + e_{ij}x^{(5)} + d_{ij}x, & (i, j = 3, 4) \end{cases}$$

con altre cinque analoghe per i, j = 1, 2.

Il sistema contiene dunque le quattro equazioni

$$x^{(5i)} = a_{5i}x^{(5)}, (i = 1, 2, 3, 4),$$

dalle quali discende (12) che sulla nostra V_5 , le V_4 , $\sigma_5 = {\rm costante}$, sono tali che gli S_5 tangenti alla V_5 nei punti di una di quelle V_4 passano per il punto $X=x^{(5)}$. Derivando rispetto a σ_5 le 6 equazioni fra le (75) che contengono $x^{(55)}$ e sostituendo alle derivate terze le loro espressioni ricavate dalle (75"), eliminando poi fra le relazioni ottenute $x^{(1)}$, $x^{(2)}$, $x^{(3)}$, $x^{(4)}$, x, si ottiene una relazione del tipo

$$\lambda x^{(555)} + \mu x^{(55)} + \nu x^{(5)} = 0,$$

che, insieme con le (75"), mostra che il punto X descrive una retta r al variare dei parametri e che le linee σ_5 della V_5 sono curve piane (13) i cui piani pasano per r; la V_5 è poi, come si vede subito, proiettata secondo una V_6' dalla retta r.

Consideriamo le $\infty^2 V_3'$, σ_1 e σ_2 costanti, e le $\infty^2 V_3''$, σ_3 e σ_4 costanti, tracciate sulla V_5 ; quelle varietà soddisfano a cinque equazioni di Laplace I.i. (75') la cui forma assicura ch'esse stanno in S_4 (non sono cioè ∞^1 di S_2 sviluppabili ordinarie). Si vede facilmente che i due sistemi ∞^2 di S_4 formano le V_6' di cui s'è detto prima, gli S_4 passando per r; due S_4 di sistema diverso si segano lungo un piano per r, contenente una linea σ_5 di V_5 , mentre invece due S_4 dello stesso sistema hanno a comune soltanto r. Semplici ragionamenti permettono infine di concludere che la V_6' è un S_1 -cono proiettante la V_4^6 di S_8 di C. Segre. Si conclude che: la V_5 è attualmente luogo di due sistemi ∞^2 di V_3 situate negli S_4 di un S_1 -cono proiettante la V_4^6 di C. Segre.

Passiamo ora a considerare l'eventualità 2) di prima. Si è condotti al sistema

$$\begin{cases} A_{i}A_{i}x \otimes 0, & (i = 1, 2, 3, 4, 5), \\ A_{h}A_{k}x + \alpha_{hk}A_{1}A_{2}x \otimes 0, & \end{cases}$$

⁽¹²⁾ Si veda: Bompiani, pag. 110 del lavoro citato nella annotazio ne (22) di pag. 444 della Parte I del presente lavoro.

⁽¹³⁾ Escluse le retté: de application de la company de la

per h=1, k=3,4,5 e poi h=2, k=3 ed h=4, k=5. Come per il sistema (74), ci si riduce al sistema

(76')
$$\begin{cases} x^{(55)} \otimes 0, \\ x^{(ij)} + \varrho_{ij} x^{(45)} \otimes 0, & (i, j = 3, 4 \text{ ed } i, j = 1, 2), \\ x^{(l5)} + \varrho_{l5} x^{(45)} \otimes 0, & (l = 1, 2, 3), \end{cases}$$

le ϱ_{ij} essendo non tutte nulle, come pure le ϱ_{l5} .

Il confronto delle derivate terze permette anche ora di constatare che la prima equazione (76') contiene solo $x^{(55)}$, $x^{(5)}$ ed x e si vede così che le linee σ_5 sono ora rette. Con una opportuna scelta del parametro σ_5 si può ridurre quella prima equazione ad $x^{(55)} = 0$, confrontando poi ancora le derivate terze, calcolate in tutti i modi possibili dalle (76') si constata che le equazioni della terza riga di (76') si riducono alle:

(77)
$$\begin{cases} x^{(15)} + \varrho_{15}x^{(45)} = a_1x^{(5)} + l_1x, \\ x^{(25)} + \varrho_{25}x^{(45)} = a_2x^{(5)} + l_2x, \\ x^{(35)} + \varrho_{35}x^{(45)} = a_3x^{(5)} + l_3x. \end{cases}$$

Considerando poi il punto $X=x^{(5)}$ si vede facilmente ch'esso descrive una curva al variare dei parametri e poi, approfittando opportunamente delle (77) e (76') si vede che quella curva è una retta r. Se si considerano poi le V_3' , σ_1 e σ_2 costanti, e le V_3'' , σ_3 e σ_4 costanti, segue dalle (76') che si tratta di V_3 rigate appartenenti allo S_4 , le cui generatrici si appoggiano ad r. Infine si conclude, ragionando analogamente a quanto s'è fatto per il caso 1), che: la V_5 è ora formata da due sistemi ∞^2 di V_3 rigate situate negli S_4 di un S_1 -cono proiettate la V_4^6 di C. Segre.

Descriviamo ora i tipi di V_5 che si ottengono in corrispondenza ai vari sottocasi dei quali s'è detto in principio. Nel caso (a) e nei cinque sottocasi in cui non entrambe le coniche sezioni sono rette doppie si ottengono sempre V_5 del tipo di quella descritta prima in 1), le V_3 dei due sistemi possono però essere V_3 rigate o anche S_0 -coni o S_1 -coni. Se le due coniche sezioni sono rette doppie si ottiene invece la V_5 :

$$(78) x = X + A(\sigma_5),$$

dove X è un punto che descrive la V_4^6 di S_8 di C. SEGRE. Si tratta di una V_5 luogo di $\infty^1 V_4^6$ e tale che le tangenti alle linee σ_5 nei punti di una V_4^6 concorrono, mentre gli S_4 tangenti alle V_4^6 nei punti di una linea σ_5 passano per

uno S_3 . La (78) è anche luogo di due sistemi di V_3 , S_1 -coni con gli S_1 -vertici situati nei piani di una V_4^6 .

Nel caso (b) si ottengono varietà analoghe a quelle considerate in 2), con le V_3' e V_3'' eventualmente S_0 -coni o S_1 -coni ed anche, se le due coniche sezioni hanno entrambe punto doppio nel punto comune ai due S_{2k} varietà dei tipi considerati nel n. 1 (14); infatti il sistema delle quadriche associate ha per sistema apolare duale un sistema di coni col vertice in comune.

Nel caso (c) si ottengono V_5 formate da un sistema di $\infty^2 S_3$ ed un sistema ∞^2 di V_3 dello S_4 (ancora situati nei due sistemi di S_4 di un S_1 -cono proiettante la V_4^6 di C. Segre) oppure varietà rigate sviluppabili e coni, dei tipi considerati nel n. 1.

- 11. Raccogliamo nel seguente enunciato i risultati conseguiti per le V_5 : Se una V_5 rappresenta d equazioni di Laplace 1.i. con $5 \le d \le 10$, (e perciò sta in S_7 con $r \ge 10$) e tuttavia è tale che i suoi S_5 tangenti ricoprono una varietà di dimensione 9, essa è:
- (a) Un cono proiettante da un punto una V_4 che non rappresenta alcuna equazione di Laplace, oppure ne rappresenta δ , con $1 \leq \delta \leq 5$.
- (b) Una sviluppabile con curva direttrice, generica, oppure soddisfacente a δ (con $1 \le \delta \le 2$) equazioni di Laplace 1.i. oltre quelle (in numero di 8) che assicurano l'esistenza di una curva direttrice.
- (c) Una sviluppabile con superficie direttrice o una V_5 luogo di S_3 tangenti ad una superficie.
- (d) Una V_5 luogo di ∞^3 superficie situate negli S_3 di un S_2 -cono proiettante una V_3 , generica, oppure soddisfacente ad una o due equazioni di Laplace l.i., le superficie degli S_3 potendo essere non sviluppabili o sviluppabili.
- (e) V_5 luogo di ∞^3 superficie, non sviluppabili o sviluppabili, situate negli S_3 di un S_1 -cono proiettante una V_4 rigata sviluppabile che soddisfa a 6 equazioni di Laplace.
- (f) V_5 luogo di ∞^2 V_3 situate negli S_5 di un S_4 -cono generico, escluse le V_3 sviluppabili ordinarie.
- (g) V_5 luogo di ∞^2 V_3 , ∞^1 di piani sviluppabili ordinarie, situate negli S_5 di un S_4 -cono generico.
- (h) V_5 luogo di ∞^2 V_3 , situate negli S_4 di un S_1 -cono proiettante una V_4 luogo di ∞^2 piani e soddisfacente a 6 equazioni di Laplace, oppure negli S_4 di una V_6' ∞^2 di S_4 con S_7 tangente fisso lungo S_4
 - (i) V_5 luogo di ∞^3 S_2 con S_6 tangente fisso lungo ogni S_2 .
 - (1) V_5 luogo di ∞^2 S_3 con S_7 tangente fisso lungo ogni S_3 .
- (m) V_5^{10} di S_{11} di C. Segre e sua proiezione in S_{10} .

⁽¹⁴⁾ Talf varietà hanno però in parte i caratteri delle varietà ottenute nel presente n. .

- (n) V_5 formate da due sistemi ∞^2 di V_3 situate negli S_4 di un S_1 -cono proiettante la V_4^6 di C. Segre, le V_3 potendo essere rigate o anche S_0 -coni o S_1 -coni.
- (o) V_5 formate da ∞^2 S_3 e da ∞^2 V_3 situati negli S_4 di un S_1 -cono proiettante la V_4^6 di C. Segre.
- (p) V_5 luogo di ∞^1 V_4^6 di C. Segre, tali che le tangenti alle linee di un certo sistema, nei punti di una V_4^6 , concorrono in un punto.

in 1886 in the first of the second of the first of the second of the sec

The street with a second of the second of th