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R.. E. FULLERTON (%)

On the rectification of contours of a Fréchet surface. (%)

Introduction. Let § be a FrRECHET swrface and let T': ) — E, be a re-
presentation of S, where @ is the unit square 0 <s, t <1 in F,. We denote
by [S] the set of points of F, occupied by the surface S. We let w = (s, 1),
o == (@, &, @3) denote vectors in H, and F, vespectively and we let 7 be re-
presented by the vector function # == #(w). In the preceding paper [1], CESARI
considered a certain family of subsets of [S] and proved that almost all sets
of the family were rectifiable continuous curves. In working with certain
problems in the theory of swfaces it is convenient to have information about
the inverse images of these sets, in particular, to be able to exhibit a Tepre-
sentation of the surface such that the inverse images of these sets have certain
regular properties. The purpose of this Note is to show that not only are these
sets rectifiable curves, but that there exists a representation of S such that
the inverse image in @ of any countable family of them is actually a union
of simple arcs and closed curves.

For the most part, the notations and definitions used in this paper are
the same as in [1] and [2] The sets mentioned above are defined by a real
valued Lipschitzian function defined over [8]. Let t'= Pé%i% f(x), t'= max fz).
If <<t <<¢" the open set f, is defined to be the set of points of @ for which
fl@w(w)) <t. We define & to be the set ¥(8,) = f,— f.. We shall call &, the.
contour defined by f, ¢, and 8. It is shown in [1] that for almost all ¢ in the
interval t'< ¢ <(#" the essential part of the image under 7 of &, is a union of
rectifiable continuous curves on [8]. For each ¢, in the given range a length
A, 1, 8) can be defined for the image under T of &, by using the ends of f;
ending on £, in a manner similar to the standard method of defining length
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of a curve ¢ which is the continuous image of an arc I" as the supremum of
the lengths of the polygonal lines P inscribed in ¢ where the vertices of P
are chosen as the images of an ordered finite set of points of /. CEsARI showed
that [1], th1s length is a FriicHET invariant of the surface and [2] that

K-L(S) > [ A, f, 8)di where |f(z,) — f(#,) |< K|@ — x| and wheve the abso-

lute Vavlu(,s denote distances in the spaces involved. If there exists a map 7"
FRECHET equivalent to 7 under which &, becomes essentially a union of simple
ares and simple closed in @, we shall call the substitution of 7" for T a recti-
fication of the contour &,. We shall show that if & (=1,2,8,.), is any
countable set of contours, each of finite length, there exists a FRECHET equi-
V‘llent map 1" which simultaneously rectifies all the {§,} and such that
| T(p)— T'(p)| is small for every p e Q.

- Rectification of a single contour.

Theorem 1. Let S be a Fréchet surface with a representation
T:w=a(w), weQ and f a real valued function defined over [ 8], u'ith lower and up-
per bounds t' and t' respectively such that for x,, x, € S, o) —fla) < Kz — &yl
Let t be chosen so that the length A(t) of the image of 5 . s fmntc. Then, zf e>0
there exists a mapping T': @'= 2'(w), w e, Fréchet equivalent to T such
that |a'(0) — w(w)|< &, w € Q and such that ecach component of the contour &,
relative to 1" is cither a simple are, « Jordan cuwrve or a continuum of cons-
tancy for T’ on Q.

Proof. Let o, be a component of 5, and let F= o — (o, n aF). Let y
be a component of F whose image under 7T is of ﬁmte generalized length,
At) < oo, and consider the set A(ex, y) of points of @ not separated from o
by y as defined in [1]. By definition of A(x, ), 4 is either simply connected
or of genus one with Q* as its outer boundary, while the collections M},40
{o}, , of all ends and prime ends of y in A either have a cyclic ordering or a
linear ordering. We first consider the case in which 4 is simply connected
and the ends and prime ends have a cyclic ordering. Let /" be a circle plus
its interior which is interior to A(x, y). By a well known theorem of CARA-
THEODORY on plane sets (see, for example [3], p. 112) there exists a correspon-
dence 7 between points of I" and A which is a homeomorphism between the
interiors of A and I" and on the boundaries sets up a one to one order pre-
serving correspondence between points of I™ and ends and prime ends of A.
Let {p;} be a countable dense subset of I™ such that each p; corresponds to
an end of A. This is possible since any two distinct prime ends. of A are
separated by an end and the ends have images dense on I. The points on 4*
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corresponding to ends are dense on A* since any neighborhood of a boundary
point of 4 contains points of 4 accessible from 4. Let arcs {¢;} be constructed
in A — I" connecting each point p; to its image point z(p,) on A* via an arc
defining the end to which p, corresponds and such that no two of the ares
{c;} intersect except possibly at end points on A4* A new mapping 7,:

==y (ae).-is- defined.in.the-following.manner:.a,(w). = x(2); 10-€.(Q=TInt-A);
ay(w) = x(r7(w)), welnt I'; @ (w) is constant on each c¢,. Tor other points
of I'* U (4 —TI") T, is defined as follows. If w ¢ ¢, for any 4, we consider all
continua formed by closed regions bounded by two ares ¢; and portions of
I'* and A* which contain 2. The intersection of all such regions will be a
continuum g containing only one point p of I'* where p is a limit point of
certain of the p,;, p =lim p, . Define a(p) = %n}; a(p;,) and let 2,(w) = x,(p)
for wep. Thus T, is defined for all w e @ and is evidently continuous. It
must next be shown that 7, is Frucuer equivalent to 7.

We shall show that for any e > 0 there exists a homeomorphism ¢_of @
onto itself such that for w e @, lz, (p7'(w)) —a@)i<e On @—A4A, ¢, is
defined to be the identity. On A, ¢, is constructed as described helow.

Since a(w) is uniformly continuous over ) there exists a 6 >> 0 such that
[w(w,) — @(ie,) | < &f6 if |, —w,|<< . Let {w;} be points of A* (not neces-
sarily distinct) which ave images of the points {p,} under = and let {5} be the
points or continua of A* defined by 7, = u 0 A* for the continua described
above. The set {w,} is dense on A* Tet a finite ordered subfamily {£, },
(k=1,2,3,.,n), of ends of 4 be chosen corresponding to distinct points
{w; } € {w;} and such that

n

1) 2latw ) —ate; ) Ay) < g6,

k=1

where w i = Wi

Let d, be choseu so that nlp;nyw,-k-—w,-lé> 20,, k=1 0,<C§/2 and
{*%, A*} > 0,. Let circles I';(d,) of radius J, be constructed at each point w;
on A* Since A% is compact, there exists a finite subfamily I’,-l(éz), { =
= 1,2, 3,.., h), which covers A* TLet this family be chosen with centers
{w:} so as to include all circles with centers at the points {w;j. Let
6y == min, {A*,[¢, —Int I, (6,)]}. Let g, be the last point of the arc (star-
ting from i, eI *) which c has in common w1th F, {0,). T.et ¢, be the sub
arce of ¢, ﬁom i, to q:,- ’I‘hus the arc ¢, ~~c is contalned m T, (60) and
has dnmeter less th‘in ‘7(5 Tet §; >0 be the mlnm‘um of the dlStrdIlPGb of
the ares cil from A* Tet d; be the distance {4%* U7 (6:)]* 0 4)}. TLet
0 = min (d, 0., 6,/2, 0;/2). TLet cireles [;(0) be constructed with each w; as
center and radius 6. Choose a finite family I (d), (m =1, 2, 3,..., H), co-
vering A* and including all cireles ]’il(é) with centers at the centers of the



210 R. E. FULLERTON

]’,-1(62) and radius 6. Let D) be the component of 4 — Umf'.,-m(é) which includes
I" and let D* be its boundary. D* is a JORDAN curve and is such that
.D*C[UL,F,-L( nA4]. Let R be the open, simpl\' connected set bounded
by D* and 4* ‘md the mmlm‘ll sub ares ck and c - of ¢; i and iy (b=1,
2,..., #)y Joining A* and P* and let 1wy, w, € R, i,- By the (‘1101(‘(3 of the 1w, .
satisfying (1) we note that the oscillation of w(20) on 4% n R, is less-than. ,g/(‘

Also, by the construction of R,k, if w ER . there exists a pomt w; on A*
such that the cirele I (5) contains w (md hence |a(w)— w(w; )‘< gf6. If
Ww; géR N 4%, the line %eoment between w and - W, intersects R — D* i
at Ieast one point w. If we A* then |@(w)— z(w) ]< ef6. It w ec Lhen
Lo — w;, | <l — w| -+ fw— w;, 1<20< b, and | 2(w) — 2 w; }< £/6. Smnl'uly
for ¢ :.Ml. Thus in any msc it w € Ity there emsts a zo eA.kr\le with
w(w) — x(w)|< 9/6 Let w,, w, € B; and let w ., w, be points of 4*n Rik
with {a(w;) — 2(w,) |< ¢/6, [ 2(w,) — 70( w The.n we have

[(1y) — (w,) | < () — @(10,) | 4 2(10)) — 2(10,) L [w(0,) — a(w0,) | < gf2

and the oscillation of x(w) on Z?v does not exceed /2.

Tiet B;k be the region bounded by the sets iy s Tl ) T(ciw)’ A*,
and 7(D*). The homeomorphism ¢, is defined ‘IS “follows. 011 (D) we let
@, = 7Y @, is the identity on 4* and @, takes e VT(es), ¢, U -c(c,.“_l) onto
the portions of €,y Ci,, included between 4* and D*. On the interior of R:.L_,
p, is defined onto the interior of R, i, in such a manner as to agree with the
homeomorphism already constructed on its boundary. On successive regions,
@, is constructed so as to agree on the common portions of the houndaries
of the regions. Outside A4, @, is the identity. Then if w e D, @y (e (w)) =
AT (t(w))] = @(w). Also z(p;*(w)) = @(w) outside 4. If w e R, for some Fk,
w (@7 (w)) = afr (@, (w))] and v e (w)] € R, . Hence | _l(w)) — w(w)l< €
for all points in @ and 7 and 7', are PRECHDT equivalent. Since by [1] the
lengths involved are FRECHET invariant, the length of x(y) equals the length
of 2,(D*) and T, rectifies y.

It can be seen that the circle I' can be replaced by any JORDAN region
interior to 4. In particular, a region of the same type as D can be used and
can be chosen in such a way that [x(w)»«ml(w)’< ¢ for any &> 0.

In case the region 4= A(e, y) is simply connected and the collection of
ends and prime ends is linearly ordered (i.e. when 4 has a portion of @* as
part of its boundary) then D* will be an arc joining two points of Q* instead
of a JorRDAN curve. The above arguments also hold in this case.

In case A(x, y) is not simply connected, it is of genus one with Q* as its
outer boundary. By the same technique as was used in the first part of the
theorem, 4 can be mapped onto an annular region with outer boundary Q=

z_,'l
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and inner boundary a JorRDAN curve interior to 4.  This rectification can be
carried out so as to give [a(iw) — #y(w)|< & for any w e Q.

Consider now all components of F for a given o. At most a countable
family of these components have images under T of non zero length. Let
{y:} be these components. Since the {y:} ave disjoint closed sets there is a posi-

tive distance hetween any._two..of them Liet-yi-besvectified—in-sach™n—w Ty

that the new representation function @ (w) of 8 satisfies |ay(w)— x(w)|< 1/2,
w e ). Denote the rectified v1 by v,, while the other components y., vs,...
are replaced by new continua which for simplicity we still call Yoy Vageer -
Separate y, from y; by a polygonal line P,. By the rectification process of
the first part of the proof, a new map T,: @, = x,(w) can be constructed in
such a way that a(w) = Zo(w) in @ — A as well as in the portion. of @ se-
parated from y, by P, and 7, rectifies ¥. Into an are or JORDAN curve y; in such
& manner that |u,(w) — o(w) < 1/4, w e Q, and does not modify- y,. The
samme process can be carried outfor successive y: S0 that at the k-th step a
mapping T’ is obtained which does not alter the {y;}, t << k, but which rectifies
7e In such a way that|a,(w)— T (W) [< 1/2%, w e (. Since for any 5> 0
there exists k, such that [a,(10) —xw)|<n, k1> kyy Tp is a uniformly
convergent sequence of FrECcHET equivalent maps and its limit 7, is a map
FRECHET equivalent to each T, and hence to 7. Also T, rectifies all the
-contours {y,} and as in the previous part of the proof, if ¢ > 0, the sequence
{Tk} can be constructed in such a way that at each step !m,;('zo) — Ty {w0) I< e[2%
and hence |z,(w)— 2(10) |<e.

Consider now the countable set of all components {«} corresponding to a
given f, where A(£,)< oo and let A, o, T) denote the length of the image
under 7' of the set a*— (o 0 o*). Thus 0 < Moy t, T) < oo, o€ {er}. Let {or;}
be the sub family of {o} for which A(t, «, 7) > 0. Let By = af — (o; 0 a¥),
(1=1,2,3,.). For £¢>0 construct a mapping T*: ' = x'(w) which recti-
fies F; in such a way that |a1(w0) — 2(w0) |< &/2. o O oy =0 and, although
F, 0 F, may be non void and for some Y Co— (o, O ) it may happem that
o C Ao, ), it is still possible to proceed as in the first part of the proof
for a,, choosing a family of arcs and simple closed curves interior to o, and
construeting a map 72 with @*(w) = x'(w), w e & which rectifies F, with
|22 (10) — 2 () [< /2% w e Q. Mappings T3, T4,... may be similarly constructed
in such a way that THw) = T w), W E oy U o U O3 U ... U ®,_, which rectify
the F, and such that for each k, |ab(w) — z+(w) |< /28, w e Q. Again, a
limit mapping 7 exists, FRECHET equivalent to 7 which rectifies the contour
&, and such that |20(10) — @(w) | < .

2. — Reectification of a dense set of contours.

Theorem 2. Let T be as in Theorem 1 and let {t:}, =1, 2,...), be any
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countable sequence of real numbers, t'<<t,<t', for which A@;,)< co. Then for
any &> 0 there ewists a representation T, of S which simultaneously rectifies
all the contours {&,} and for which |z (1) — z(w)|< &, we Q.

Proof. Construet T;: @, = x,{w) as in Theorem 1 rectifying &, and
with @ (w) — 2(w) < /2. fle(w)) =1, for all weé, and_f(a(w)) =1, for

wed, with {544, and the same is true for the rectified contours. Thus
{5, y §,}> 0 and by a procedure similar to that of Theorem 1, 5, an  be
rectified by a mapping 7, in such a way that the rectification E, of 5, is left
unchanged and |2,(w) — x,(w )|<< &/4. By the same method as in Themenl 1
we construct a sequence {7} of mappings, each FrRECHET equivalent to 7'
such that for each k, |w.(w)— oy (w)|< &/2%, @4(w) = @, (w), w e & L& U
.U E' _, and T rectifies &. Thus the limit 7,: z =z (), we, is

(ontmuous mapping FRECHET equivalent to 7' for wluch |, w)——%(w)|<
we@ and such that T, rectifies all the {&,}, (i =1, 2, 3,...).

1

an

o

Corollary. It is possible to rectify the contours of Theorem 2 in such
a manner that under the new mapping 7', none of the contours of finite
length defined by the function f contain triodic continua.

Proof. By a theorem of R. L. MoORE [5], at most a countable family
of disjoint continua in the plane contain triodic continua. Those contours
of finite length can be rectified as in Theorem 2 and the rectification process
introduces no new contours containing such continua.
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