Rivista Mat. Univ. Parmsa 4, 289-298 (1953)

R. E. FULLERTON (*)

On the subdivision of surfaces into pieces

with rectifiable boundaries, (¥%)

1. — Introduction.

Certain classes of problems in surface area theory can be conveniently
treated if it is possible to subdivide the surface into arbitrarily small pieces
the sum of whose areas is the area of the surface. In particular, problems
which involve definitions of integrals over the surface, for example, certain
variational problems can be investigated by making use of techniques in which
this type of subdivision is involved. For instance, EwiNG [5] in a recent
paper in which he considers integrals of a WEIERSTRASS type defined over
surfaces has made use of representations having the above properties and
has shown that the existence for all surfaces S defined over a simply connected
JORDAN region and having finite LEBESGUE area of such representations is
a consequence of a representation theorem of CESARI [2]. In this paper we
prove a somewhat sharper theorem for the case of a surface defined over a
simply connected JORDAN region and which is ‘open and non degenerate and
has finite LEBESGUE area. It is shown in this ecase that there exists a decom-
position of the surface into arbitrarily small pieces, each of which is the image,

(*) Address: University of Wisconsin, Madison 6, Wisconsin, TU.S.A..

(**) Received August 4, 1953. Questa Nota fa parte del seguente gruppo di lavori
(che la « Rivista Mat. Univ. Parma » ha il piacere di pubblicare):

L. Cesar1 and R. E. FuLLERTON, O% regqular representations of surfaces, Rivista
Mat. Univ. Parma 2, 279-288 (1951).
L. Cesar1, Contours of a Fréchet surface, Rivista Mat. Univ. Parma, 4, 173-194
(1953). '

R. E. FuLLERrTON, On the rectification of contours of a Fréchet surface, - Rivista
Mat. Univ. Parma 4, 207-212 (1953).



290 . R. B. FULLERTON

under a suitably chosen representation, of a rectangle in the unit square in
the domain plane and such that the boundary of the rectangle maps into a
rectifiable continuous curve. Furthermore, the rectangles can be chosen in
such a manner that the ratio of their lengths and widths is less than two.
In the case mentioned, the representation theorem of MoRREY leads to this

and topological view-point and is hence closer to the nature of the problem.
This approach, based on recent results of CESARI [1, 4] and the author [6]
appears to have greater possibility of extension to higher dimensions and also
to the case in which the surface is defined over a finitely connected JORDAN
region, a case to which MORREY’s theorem does not apply.

Les S be a non degenerate open FrRECHET surface defined over a simply
connected JorDAN planar region. 8 can be represented in various ways by
means of maps T': @ — E; where @ is the unit square in F, and all the re-
presentations {7} are FRECHET equivalent to each other. In case S is non
degenerate and open, ie., the inverse image of any point of the surface under
any of the {7} separates neither ¢ nor H,, it is known that there exists a
representation 7' of § which is light, i.e. the inverse image under 7' of any
point of S; is a point of a totally disconnected subset of E,.

2. — Notations and basie theorems.

The notations are the standard ones used in area theory. We denote by
[8] the set of points of H, occupied by the surface S. If 4 is a planar region,
its boundary is denoted by 4%, its closure by A and its interior by 4°. For
the notions of LEBESGUE area L(S), FRECHET equivalence, etc. The reader
is referred to standard works on the subject, for example, RaDO [10] and
CEsARI [4]. We shall make use of vector notation whenever possible and
denote by T: « = @(w) the triple of real valued functions of two real variables
@y = m (U, V), By==Ts(%, V), By=1u3(u, v) Where w=(u, v)EM,, v=(T1, 2,, x;)EH,.
We denote by @ the unit squave in H,, 0 <wu,v <<1. For theorems on the
topology of the plane and on the theory of prime ends, see, for example,
NewMAN [9] and KErEKSARTO [7]. In particular, for the theory of prime
ends, see the paper of URSELL and YoUNG [11] and the first part of the paper
of CESARI [1]. We shall follow the notations of CESARI in our discussion of
ends and prime ends. It is to be noted that his notation is somewhat different
than that employed by UrseLL and YouNG. In particular, if 4 is an open
plane set and y a portion of its boundary we denote by {n},., the set of its
ends corresponding to the boundary points on y and by w, the boundary point

result—However-the-approach-to-the-problem-in-this-paper-is-from-a-geometrie -
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associated with the end 5. The absolute value symbol when used in vector
expressions will denote distances in the space involved.

The principal tool used in the proof of the theorem is the recently announced
theorem of CESARI [4] in which he extends a classical inequality originally
proved for HATUSDORFF measures on metric spaces to an inequality involving

LEBESGUE area of Ericugrr. surfaces.. Specifically,-the-theorem-of—CESART

states that if f is a real valued function defined over the points [§] of a sur-

face S and satisfying the condition [H(@)) — fl@) | < K| oy — x| for some

K > 0 and for every pair @, @, of points of [§] and if A(?) is the length of the

image of the boundary of the open set pic @ for which f(w(w)) < t and if t, 1"

are respectively the upper and lower bounds of f(z) on [S8], then K-L(8) >
-

> { A@)dt. The length A(f) of the image of the boundary of S, is defined in
.tl

a manner similar to that of defining a length of a curve in terms of a mapping
function defined on a simple arc and is discussed in CESARI [1]. CEsARI has
shown that this generalized length defined on the images of boundaries of
open sets of ¢ which lie on [8] is a FRECHET invariant of the surface. The
inequality of CESARI shows that in case L(8) < oo, A(t) << oo for almost all
¢t in the interval #<<t<C¢". The author has proved [6], using CESART’S result,
that if {¢,} is any countable set of points of the interval [t',¢"] for which
A(t:)<< co there exists a representation 7 of § such that for any given /3;’:,
the set T’—l[T(ﬁZ)] is a collection of simple arcs and simple closed eurves for
each 4. The substitution of such a map 7" for T is called a rectification of
the contour g7. The principal tool used in the following theorem consists
of a rectification of certain contours of finite length to straight line segments.

3. — The subdivision theorem.

Theorem. Let 8 be an open non degenerate Fréchet surface of finite
Lebesgue area and let T: z = x(w), we Q, z € Iy, be a representation of S.
Then there exists a representation T, of 8, Fréchet equivalent to T and a
nested sequence {P:} of partitions of @ into closed rectangles Pp— {R.,} with
sides parallel to the axes and with disjoint interiors hawving the following properties:

(@) The ratio of the larger to the smaller side of each R;,. does not exceed 2.

(b) For each &> 0 there exists an n, such that the diameter of each R,
is less than ¢ if k> n_.

(¢) Por each R, , T (R} — Q%) is a rectifiable continuous curve.

Proof. Since 7 is open and non degenerate there exists a light mapping
U: @ — I, represented by x = x(w) which is FRECHET equivalent to 7. Let
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I, be the line segment in Q composed of those points w = (u, v) for which
u=3. Let w be any point of ¢ and consider the point x(w) e[S]. Let
{o;(w)} be a sequence of closed spheres in F, with centers z(w) and with radii
decreasing to zero. Let C,, = C.LUo,(w) n[S]}] be the component of
U-*{o,(w) 7 [S]} in @ which contains w. Then {C;,} is a monotone decreasing

Sequence of closed subsets of @ with U(C;,) co;(w). Also g C;e = w since
if the intersection contained more than one point it would contain a con-
nected subset of points whose image would be z(w) contrary to the hypothesis
that U is light. Let s(w) be a circle around w with a positive radius. Then
there esists a j, with (J,-wcs(w) for all j > j, since if this were not so there

would exist wy 5 w, w; € _ﬂl C,, contrary to the assumption that U is light,
-

Since U is uniformly continuous over @, there exists for each ¢> 0 a
0> 0 such that |w(w,)— z(w,)|< ¢ if |, —wy|< 8. Let 6,> 0 be chosen
so that |x(wi)—m(wg)[<;}; for |w,—w,|<<d; and 6, << }. Let L, be a rect-
angular strip of width ¢, in @ with I, as center line, i.e. weL, if and only
if w = (u, v) with }— 6,/2 < u < 4 4 6,/2. For each w €, there exists a sphere
of(w, r,) of radius », and center @(w) in By such that C.[U*o(w,r,) 0 [8]}]
is of diameter less that 6, and hence lies in L,. For each wel, let a function
f«(#) be defined as follows. Tet o(w, r,) be the sphere above and let f.(z)=1
if »e[S]— o(w,r,), fu(@(w)) = 0 and if =€ o(w,r,) let f. () = r/r, where r
is the distance between z and x(w) in B;. Evidently for K, > 1/r, we have
[ul@) — ful@) | < K, |0, — .| for any @;, m € S. Hence the CESARI inequality
cal be applied the this function. Let Bo(t) be the set of points of @ for which
ful@(w)) <t It 0<it< 1, some component of B,(¢) lies in L,. Let A,() be -
f,he1 length of the image of BE@®). By the Cesarr inequality, K, L(S)>

> f Ao(t)dt.  Since L(S)< oo for all wely, A,{f) is finite for almost all ¢,

0 <0 <1 TFor each wel, let ¢, be a value of ¢ for which Aul(tn) << oo and let
ou(tw) be the component of 4, (t,) which containsw. Then etu(to) U Yo (w,r,)N[ 8]}
For each wel, let a set o.{ty) be so chosen. Then the family of open sets
{u(t,)} covers the set ;. Each set of the family lies in [, and the image
under U of the portion of its boundary interior to @ is of finite length. Since
L is compact, there exists a finite subfamily %o fte)s (i =1,2,3, ..., n), such
that 7 - o, (te). Let each a,(t,) be designated by oy, (i =1, 2,3, ..., n).
Since eacljlsuch set has U(xf — @%) of finite length, the sum of the lengths

is finite. Since !, separates @, Cj o; separates @ also. Let 4, be the set of
i=1

points of @ which are separated from the points to the left of L, by the set

U o; or some subset of U «;. Then 4, is simply connected and open in ¢
i=1 _ i=1 . .
a,rid F(4;) = 4,— A, i8 a single continuum y, completely contained in IL,,
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separating 4, from the segment I, in @. y has non empty intersections with
the portions of the lines v =0, v =1 included in IL,. Let w, = (u,0),
w, = (U, 1) be the intersection points of maximum abscissa of v and these
segments. Thus the two segments [v =10, u <u< 1, =1, u, <u<1]
characterize two ends 7, 7, of ¥ in 4, and the collection {n},.4, of all ends
of v in 4, can be linearly ordered and constitute a closed interval [#;, #,] of

ends (see{1]); whose end elements-aren;and-7;—We-shall-prove-by-a-number
of lemmas that the set y is a simple arc whose image under U has finite length.

Lemma 1. For any end n€{n},, there is an end n'c {1}, Telative to
some o; With w, == W,..

Proof. For any end 7 € {n},,, let w, €y be the point on y corresponding
to . Then w, € oF for at least one «;, j=1,2,..,n and hence there exists
at least one prime end o € {w},, such that w, € B, where E, is the set of
boundary points corresponding to w. Since Ay = Au(ty,) <00 and by a theorem
of Cusari [1, 4], U is constant on ¥, and since U is light, B is a single point.
This implies that E, is accessible from o; and hence corresponds to an end

of o;.
Lemma 2. If %', %" are any two distinct ends of y in 4, then w . 7= w,..

Proof. Suppose that w, = w, = w. Let s', s" be two arcs defining
7'y 7" having only w and one other point w* in common where w* is interior
to A4,. The s’ Us" is a JORDAN curve defining a closed JORDAN region J C @,
J*— ' Us'C A, U (w). JOny =0, would imply that J°n o 5= 0 for some j and
hence that J*noF =£0 for some j, a contradiction since J*¥c A, v (w),
Jon o; = 0 and this implies that %' and 7" are not distinct ends of y in 4,
and yields a contradiction. Thus w, 7 w,. for distinet ends %', #” of y in 4,.

Lemma 3. If 1, Ny 7, My are distinet ordered ends of y in A, and there
are four ends 7, Ne My Ny relative to the same o; with wy, == Wy, (j=1,2,3,4),
then 1., My 1, 7y ave distinct and ordered ends of o.

Proof. By lemma 2, the points w, = w, are distinet and hence the
ends 7, ave distinct. Let s;, s;, i=1,2,3,4, be arcs defining the ends 7,
of yin 4, and 77; of «;. It may be assumed that the arcs s, intersect only at
some point w*e A] and that the arcs s, intersect at a single point of «;.
The ordering of the ends 7y, %z 73, s implies that the cross-cut s, U s; sepa-
rates the ares s, — (w*), s,— (w¥) in 4,. Let J* be the JORDAN curve
J¥= 8, U US, U s,. It is easily seen that J* separates the ares s,— {w*),
8, — (w*) in Q. Since the ares s; liein 4, U (wm_) and the arcs s: lie in o; U (zu,]i),
and the only intersection point of the ares s; is w™ and of the s, is a point
of «;, it can be seen that the open arcs s, U s, and s, U s; are separated by J*.
This implies that the half open arcs s, and s, are separated by J* and hence



294 R. E. FULLERTON

by s, U s, in «; and that the ends Nes Ny N3, 7, ave ordered in the same ordering
as 1y N2y sy Noe

It will be noted that the above reasoning can be inverted. Also, it can
be extended to show that any finite ordered array of ends of 4, which cor-
respond to boundary points corresponding to ends of some «, induce the same
ordering on the ends of «;.

Lemma 4. All points of y are accessible from A,.

Proof. Let w be any prime end of y in 4, and let B, be the corresponding
continuum E,Cy, H, the set of the principal points of B,, and E., B’ the
left and right wings of %, (see [11]). K., E., E, are subcontinua of B,
B,cE,nE,, B,0E,=H,. Consider first the set H,. Let {7} be the
interval of ends from the first end on y to w. For each end in this interval
there corresponds an end %’ relative to some ¢«; (j=1 12,3, ..y m). Let {n'};
be the subcollection of all the ends relative to «; corresponding to ends of y
relative to A, in the above interval. These n collections are not necessarily
disjoint and some may be empty or finite. Assume each class ordered as the
corresponding ends of A4; and let us consider only those classes {n'}; which
contain ends of any open interval containing w and which are infinite. Since
each point of E,, is a limit point of points w,, 7 € {n}’ we can denote by E,
the set of all points w € E., which are limit points of w,., 7 €{n'};. Then the
sets I, are closed and cover E,. For each ordered collecmon {n'}; consider
also the corresponding ordered collection {#z(w,)}; of points of E,. Assume
that such a collection has more than one limit point in %, and let z', 2" be two

distinet limit points with lw #"|=36> 0. Consider a finite system of 2N
ordered ends 7y, 7, -, sy €{7’}; such that ]%,_r—m |[< 6, |@—a"|< s,
v=1,2,38,.., N), where z, — z(wy,), vw=1,2,3,...,,2N). Then the cor-

responding ends 77;, (r=1,2,3,.., 2N), with Wy, = Wy, are ordered in o; and
25

we have co>1;> Y|, — ,;|> 2(N —1)6 where N can be taken arbitra-
v=1
rily large. This gives a contradiction since Ala)f) << co. Thus the ordered

collection {z(w,)} has only one limit point #, and this implies that U has a
constant value #, on the set E;. Thus U may have at most n distinct values
on E, and must be hence constant on E,, since E, is a continuum. The
same holds for E and since E, n B. = 0, U is constant on E,. This implies.
that B, is a single point since U is light. This holds for all prime ends w
of y and, since {&,} is a covering of y, all the points of y are accessible from 4, .

Lemma 5. y is an arc joining the points w, and w, .

Proof. It is known [11] that there is a mapping 7: 4, — I" mapping
4, into a circle I" and A into I'*, y into an arc ¢ of I'*, and that 7 is one to
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one and continuous between the collection of the prime ends of A} in A4,
and I™ and one to one and continuous between A7 and I'. In the present
case all prime ends correspond to simple ends # of y and distinct ends cor-
respond to different points wey. Thus 77! is a homeomorphism between
an arc of [™ and p. Hence y is an arc. ’

- Lemma 6. Given any two points w'y w'ey. Then there exists a sequence
(xf" Fiyy vy & of the_ «; and a sequence of ends 17;, Ny weey Ty N1y ey My Where
Ny M are respectively ends of the a;, and such that w'= Wy, W= w, and
Wy, =Wy, for i=2,3, ...,k

Proof. Evidently the set {o 0y}, (i=1, 2, ..., n), are closed and cover -
Let w'eo; and let 7, be an end corresponding to w'. Consider all the sets o
containing ' and assume that ocj'j is the set of this family containing points
on y nearest to w". Let w,’ be the point on ;' Ny nearest to w’. Then since
the o ny are closed and cover y, if wy; 7 w', there exist sets o containing
wy; which do not contain w’. Consider all these sets, let «; be the set of this
family containing points on y nearest w" and let Wy, be the point on o Ny
nearest w". TLet this process be continued and since the family {«;} is finite
we get at most n points. Let #;, 7, be ends of the a,; with w,, = w,; for
1=2,3,.., k.

Lemma 7. The image under U of y is a continuous curve of finite length

My) with Aly) <ﬁ ).

Proof. Let {5} be any finite ordered system of ends of y in 4, where
i=1,2,.., N. For each i, the point w, lies in some « ny. It is to be
noted that the points w, which lie in the same o may be non consecutive
points in the family {w"i}. By Lemma 6, it is possible to insert between any
two consecutive points Wy Wy, lying in different sets o, convenient finite
chains of new points. The final result is a new finite chain W, (=1, 2, ..., M),
M >N which is the union.of a number K of subfamilies (0,05 ooes W, m}s
Wiy s Wy, 41y -1 Wyimpts o {10,0m, s =+ W,myy Where the last element of
each family coincides with the first element of the next and where successive
points are in the same set ajyy (k=1,2, ..., K). The same ¢; May occur more
than once in this succession. Hence

N ~1 -1 K ms
Elm(w,,,.) - m(w:;i+,) ) < zlx(w,,m) - $(w7)(i+1)) l = 2 ZIm(wn(:‘)) - m(wn(:vrl)) [ .
i=1 j=1 s=1j=mg

If the last sum is rearranged so as to associate the various interior sums rela-
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tive to the same set «;, we have

N-1

2 l m(lwr],-) - x(/u)?]i-f-x) } < g (Z I ‘T(Iwn(.i)) - LL’(’ZU”U + 1)) l)

Since the second sum is always less than > A(x)) = << co. The first sum
j=1

is bounded by € for all possible choices of points w, and hence by the defi-
nition of the CESARI generalized length, A(y) exists and is less than C.

By the way in which y was constructed, each point w lies on the boundary
of an open set «; of diameter not exceeding d,. Hence each point of y can
be joined to a point of I; by a simple are of diameter less than 6;. By methods
similar to those used in the author’s paper [6], a homeomorphism ¢ from 4,
to the set of points for which w > § in @ can be found which is the identity
for all points w = (u, v) € @ with « > 1+4, which takes p into I, and is such
that the distance between any point of @ and its image under ¢ is less than §,.
This homeomorphism can be defined on all of ¢ in such a way as to be the
identity on all points except those of I, and which takes Q* into itself. Let
the mapping U, be defined from @ to Ly as U, = Up?; x,(w) == 2(p~(w)),
we@. Thus for we @, |ax(w)—a(w)|<< + and U, is also a light mapping
of @ into E; which maps [, into a continuous curve of finite length.

Let 6,> 0 be such that |z,(w)— 2,(w')|< § if |w—w'|<< d,. Let L, be
a strip of width J, in @ consisting of all points w = (u, v) with 0 <u <
and 31—, <v<}+0,. Let w, be the point (}, ) €@ and around x,(w,)
on [ 8] construct a sphere such that the inverse image under U, of the inter-
section of this sphere and [8] has its component «, which includes w, of dia-
meter less than §,. Let a function ;fwn(m) be defined over [8] as in the first
part of the proof. Let f, be defined as before having a boundary of finite
length and let o, be the component of which included w,. Let & be a com-
ponent of the boundary of «, c L, which intersects both I, and I, and let =’
be the point of intersection of &, with I, which lies farthest to the right. Let
w" be the point of intersection of &, and {,. BEvidently w', w" == w,. For
all points of I, between the point (0, §) and w’ let sets o(¢,) be constructed
as in the first part of the proof, each having boundaries whose images
are of finite length and each of diameter less than &,. Let {&«} be
2 finite subfamily of these sets covering the segment v = %, 0 <u < w’ and
let 4, be formed in the half of @ to the left of !, in a manner similar to that

of A4, bounded by portions of the boundary of Ul o®* and &. Let I, be a
i

line segment, parallel to the « axis joining the point w'= (}, ") to the point

(0, v"). By the same method as was used in the first part of the proof it is

where-the-interior-sum-corresponds-to-ends-7;; relative—to-o; ordered-in oy
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possible to find a new mapping Us; @, = a,(w) which is light and LEBESGUER
-equivalent to U,, which rectifies the portion of the boundary of 4, not on
Q% or I, into I, such that a(w) = @y(w) on I, and on @ — L, and such that
Ly () — w(w) | < §, we Q.

We continue the same procedure. At the next step the set of points to
~-the-right-of-I~is-divided-in-the-same-manner-and-a-rectifying-map-U;.is-ob-

tained which is equal to U, outside a small strip in @ and such that
|2, (w) — @5(w) << 1/16, w e Q. Thus at each step of the process, a mapping U,
is obtained which rectifies an arc in @ which divides a rectangle in @ appro-
ximately in half and such that at the w-th step in the process U, is such
that |@,(w) — 2, () |< 1/2%, w € Q. If at any step in the process some of the
rectangles have the ratios of their longer to their shorter sides exceeding two,
the next step will be taken to divide them approximately in half and to rectify
them in such a way .that the ratio of the longer to the shorter sides of the
resulting rectangles does not exceed two. The partitions P, will be the sub-
divisions of @ obtained each time this is realized for all the rectangles of the
subdivision of @. The mapping 7, will be defined as the uniform limit of
the sequence {U,} of mappings as above defined. By the method of their
.construction all the mappings U, are LEBESGUE equivalent and converge to
a continuous mapping 7,: @ — F; where Ty = U, over all the R;p— @Q* for
any fixed k and all n sufficiently large. Thus for all & and 7 for which R,
is defined, 7 (R}— Q%) is a rectifiable continuous curve and the diameters
-of the R,, approach zero as & becomes infinite.

Corollary. If T is a light mapping, the mapping T, of the theorem
is LEBESGUE equivalent to 7.
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