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LaMBERTO CESART and Jack K. HALEe (%)

Second order linear differential systems with periodic

L-integrable coeflicients. (**)

The well known MATHIETU equation ¥’ -+ (¢* + 4 cos wz)y = 0 and the HmLL
equation '+ [0® + Ag(x)] y = 0 [p periodic of period T = 2n/w], and others,
can be considered as particular cases of systems of linear differential equations

e o Y . ; ; oA

1) Yo + Sulan -+ dpa@)ly. =0, (t=1,2,..2),
1

where @, (z) are periodic functions of period 7 = 2njw and 1 is a parameter.
These systems for 4 small have been con idered by L. CESARI [4] (%) in a previous
paper under the hypothesis that the functions ¢, have absolute convergent
FouriEr series. The same systems (1) shall be further discussed under the
same hypothesis by R. A. Gaymmn [6], and under the weaker hypothesis
that the functions ¢, are only L-integrable in [0, 7] by J. K. HaLe [8]. In
all these papers [4, 6, 8], the authors use a variant of the PoINCcARE method of
casting out the secular terms in the solutions of (1) by successive approximations.
Another analogous variant of the same method shall be used by J. K. Harx [8]
for autonomous non-linear systems, and by R. A. GaMBILL and J. K. HArg [7]
for non-linear systems with periodic terms.
For n = 2, i.e., for systems

?/]I_ = (@;, 4 Apu)th + (a2 + A@12)¥s 5
?/; = (tty; /1%1)% + (@ + Z%a)% s

)

(2)
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results somewhat stronger than for n > 2 can be obtained as has been pointed
out by L. Cesari [4]. Indeed, if p,, p, are the characteristic roots of the
2 X2 constant matvix [a.uf, (5, h =1, 2), if either R(0) <0, (j = 1, 2), or
R(g;) = 0, (j=1, 2), 0, = =410, 6> 0, and mw # 2¢ for all m = 1,2, ..., it
the functions g, are periodic of period T, have mean value zero in [0, 7] and
absolutely convergent FOURIER series, then there exists a §> 0 such that
all sclutions of (2) are bounded for |A|< 6. (For n>2, the analogous statement
holds provided general conditions of symmetry of the matrix [p,] are satis-
fied [4].)

In the present short paper, we prove that much more meclusive statements
(Theorems I and IT below) can be obtained for systems (2) by a direct applica-
tion of general theorems concerning existence, unicity, and continuous de-
pendence upon parameters of linear VOLTERRA integral equations, in- parti-
cular, some slight generalizations of results of B. Hitre and J. D. TAMARKIN [9],
or some known results of C. CARATHEODORY [3].

Theorem 1. Consider the mairiz é(judtim@
(3) Y'=AY -+ Dx; )Y, a.e. (2), —oo< &< -+ oo, (‘= d/du),
where 1 is a complex parameter, 4 = Maw, Iy (1, v = 1, 2), is a real constant matriz,
and D(@; 1) =g (@5 D], (1, v =1, 2), is a matriz whose elements Py (73 A) are
complex valued functions of the real variable z, periodic in x of period T = 2m/w,
L-integrable in [0, T and ecach function P(@;5 A) is a continuwous function of A
at X =0 for almost all & in [0, T']. Morcover, we assume that Pun(@; 0) = 0 and
@, (@5 ) [<o@@) ae in [0, T], |A]<A for some given 2,>0, and w(x) is L-inte-
grable in [0, T]. If the characteristic roots of the matriz A are g, 0., where
either (a) R{0;) << 0, (j=1,2), or, (b) g, =10, 0. =—ic, ¢>0, mw = 20,
T
(m=1,2,..), and [ (@i + @z)de <0 for all |1|< 2y, then the absolutely con-
[1}

tinuous solutions Y of (3) are bounded in (0, +o0) for |A| sufficiently small.

Theorem II. Consider the differential equation
4) Y+l Ay +ple; Ay + o2y =0, a.e., —ocoL#< + o0,

where ¢ > 0, L is a real parameter, the functions @(x; 1), p(@; 1) are real functions,

periodic in x of. period T = 2miw, L-integrable with respect to x in [0, T] for

all |A|< 2, continuous functions of A at A== 0 for almost all = in [0, T] and
K

@(@; 0) = p(z; 0) = 0. Moreover, assume that [ y(x; 2)dw>0 for all |2]< 2,
. ° [

(?) By «a.e.» we mean « almost everywlere »
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and some given Ay > 0, and that there exists a function n(x), L-integrable in [0, 1],
such that |p(z; 2)|<n(@), lp@; D)]<y@) for all z in [0, T] and all |A]<l,.
If | 2] is sufficiently small and mo 5 20 (m = 1, 2, ...), then the absolutely con-
tinuwous solutions of (4) are bounded in (0, -~ co0).

In order to prove the preceding theorems, we shall prove the following
lemmas which are extensions of a result of E. Hiore and J. D. TaMarkixN [9].
We shall denote by 2 a real or complex parameter, |1]<C 4, by f(@), o(&) > 0,
y(z) functions defined a.e. in an interval [0, 5] and by Kz, §; A), Rz, &; )
functions defined for every [A|<4,, a.e. in the triangle R = [0 < & <z <D].
We shall denote as usual by L the class of all L-integrable funetions in [0, b}
or R, and by £[w] the class of all functions F(x) such that w(@)F(z)e L.

Lemma 1. Consider the VoLTERRA integral equation

(5) yle) = (@) + | Kz, & 2) y(&)dé, 0<wsib,

~ where, K(x, &5 A) € Liin R for all [1]<2, for some given 2, >0, and we assume
there exists a function w(f) eI such that

(6) | Kz, & 2 |< o(§)

a.e. in R and |A|< 4,. For every f(z) € 2lw], there is a unique solution y(a:; )
of (5) defined for every [A|< 1, a.e. in [0, b], y(z; 1) € Llw] and the solution
y(z; A) is given by

»

Yl 2) = fl@) - [ Ria. £ 2) (£ s

o
where R(z &; 1) is defined for every |A|<{2y, a.e. in R, and Rz, & A)elL
in R for every |A1<<4,. If we further assume that K(z, &; 4) is a continuous
function of A for almost all (z, &) € R and some 1 = 4,, then y(xz; 1) is also a
continuous function of A for almost all & in [0, 0] and A = 2,.

Proof. In order to show the existence of the resolvent R(z, &; 1), we
proceed exactly as in BE. HLE and J. D. TAMARKIN to obtain evaluations

b
for the iterated kernels K,(z, & 1). I we let €= [w()df, we have

| K. (@, & A)| < O 'w(£)/(n—1)! and, hence, the series 0} > K, £ 4)] =
=|R(@, £; A)|< w(§) ¢ is absolutely convergent at all points where w(§) is
finite, and at each of these points the same series is uniformly convergent in
A for |A]< 4. The proof that the function F(z, &; 1) is really a resolvent
and the proof of the uniqueness is exactly the same as in . HimrLe and
J. D. TaMARKIN. Thus, the solution y(z; 4) is given by

(7) Y A) = fa) + | R, & 2) f(€) A .
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It K(z, & 2) is a continuous function of A at 1 = 1, for almost all (z, &) € R,
then, by (6), we see from a theorem in E. W. HoBsox (10, p. 323] that each
of the iterated kernels K,(z, &; A) is continuous at A = Ay for almost all
(2, &) € R. Moreover, since > K,(z, £; 2) is uniformly conver gent with respect
to 4, for |1{< 2, and almost all (z, §)e R, we conclude that F(, &y A) is
continuous at A = 1, for almost all (z, &) e R. Finally, from (7) and the same
theorem in HoBsox, we have the solution y(x; A) is a continuouns function
of 2 at A= 1, for almost all « in- [0, 5], and the Lemma is proved.

Lemma 2. If all the conditions of Lemma 1 are satisfied, if, in addition,
(@, &; 2) is finite for all @ in [0, b], | 4] << 4, and almost all & and I (, &5 2)|<
< w(é) for all (z, &) e R and |1]< A, and if f(»)e Llw] is finite for all x in
[0, 8], then y(x; A) is a continuous function of 1 at 1 = A, for all # in [0, b].

Proof. We then have |H(z, & 4)|< w(£)e for |A]< 2, and all  in [0, b}
and the Lemma follows immediately.

Proof of Theorem L.~ We may assume withouv loss of generality that
i il
01 0

fi » where ¢ is either 0 or 1, and ¢ is certainly 0 if o, »= 0. The

A =

absolutely continuous (AC) solutions of (3) coincide with the solutions of the
matrix integral equation :

(8) Y(@; A) = Z(x)K + fmZ(m—~ s) D(s; )Y (s; A)ds,

where K is a constant matrix and Z(z) is a non-singular solution of the
equation Z'= AZ. This can be proved following the proof in LEFSCHETZ
[11, p. 62] for the case where @ is continuous. Furthermore, the matrix Z(z)
can be chosen to be

i enr () i
|

| exeos™ gy

i
i

where e is the same as above. As a consequence, the elemeuts of the matrix
kernel Z(wx— s) P(s; A) are of the form

(9) Kz, 55 1) = ®"""y(s; A) + el@—s) ¢, (s; A),

where ¢ is one of the numbers g,, g, and @,, @, correspond to some one of
the functions ¢,,. Then |K(z,s; 2)|< (1 + eT)e®? w(s) for all  and almost
all s such that 0 < <s < T and all |A{<4,. Moreover, since Z(x) is con-
tinuous and bounded for all @, we see that the conditions of Lemma 2 are

satisfied and, thus, any solution Y (w; A) of (8) is unique and is a continnous
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tunetion of A at A = 0 for all @ in [0, 7). Tinally, this implies that any A4C
solution of (3) is a continuous function of 4 at A = 0 for all = in [0, T'].

Since the A€ solutions of (3) are unique, we may proceed exactly as in S.
LerscrETz [11, p. 68] to show that theve is a fundamental matrix of AC
solutions of (3) of the form [y.(z; A)|=]¢pule; 1), where the functions
pale; 1) arve periodic in x of period 7' if 7,5 7, (mod wi), and polynomials
in & with coefficients periodic in # of period T if 7, == 7, (mod wi). The numbers
71, T arve called the characteristic exponents of (3) and are determined up to
a multiple of wi.

If we let B;==¢9% (j=1,2), then since y(r;2) is coutinuous in 4 at
A =0 for all z in [0, 7], it is l\nown [5] that f,, B. satisfy an equation of the
form

10 g2 248 + B =0,

where 4 = A(1), B = B()) are continuous functions of 1 at 1= 0. Since
the numbers B,;(1), 7,(4) can be regarded as continuous functions of 4, B,
““ghey are continuous functions of 4 at 2 == 0 and, from (3), we see that we
may take 7:(0) = 0., 7(0) = ¢..
If we assume that R(p;) < 0, then, by continuity, R(7;(4)) < 0; (j = 1, 2),
for |2] sufficiently small, and the AC solutions of (3) are bounded in (0; +-c0).
Lct us now assume that o, = i0, g, = — o, ¢ > 0, mo #* 20, (m = 1,2, ...},

and [ (@11 -+ @u) dw = p(1)T < 0, where this relation defines the function y{4).

I‘lom our assumptlon on @y, Pu, we have y(A) is continuous at 4= 0 and
y(0) = 0. From the Froquer theory [5], we know that B in (10) is given by

T
f [Cayy+ gy age + Apan)]dt
P o4 wfe ..
.B(M (’-0 o("‘“ Fa) DT (,(za A SO S & (2)2‘

Moreover, for 1 =0, we have 8, = %, B, = ¢™*", B(0) =1, and, if we
put 4, = A(0), B, = B(0), and make use of (10), we obtain 20T 24,65
4+ 1 =0, 0r, 4, = cos ¢7. Since mw = 20, (M = 1,2, ...), we have Ap— By =
= 4> —1<—38<0, where ¢ is fixed > 0. Since 4(2), B(4) are continuous
functions of 1, we have A2(1)—— B(4)<C 0 for I‘inally,

since f;, B, are given by f, , = 4 4 \/Z-M:- B, we obtain |f, } = [/5’ I— A) <1,
thus the A0 solutions of (3) are bounded in (0, + oo) for || sufficiently small,
and Theorem I-is proved.

Note 1. Instead of using Lemmsa 2 in the proof, we could have used
a result of C. CARATHEODORY [3, p. 678, Satz 5].

Note 2. The case (a) of Theorem I could be obtained from a previous
paper of D. Carico [2, (a)] as follows. We shall first evaluate each of the
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expressions in (9). If we let (1) = max “(ﬁzw(""“ Aldm, (¢, v =1, 2), then,
4]

since R(p) << 0, we have

€ ar I

f%c’-“""s)(p] (83 M) ]ds = ( [ . f o ) T (s 1) s <

1] eI a2y

=7 77(2‘)(] + (}ge(‘_))T_i_ (,292(9)7' ﬁL . ) (\)}(;‘)(1 . ege(o)l‘)-l.

Likewise, the other term in (9) has the majorant Tiy(2)(1 — e®97)-1 Turther-
more, from our assumption on the ®,.(#;5 2), we have n(1) is a continuous fune-

tion of 2 at A =10 and #(0) = 0. Thus, for |4 sufficiently small, we can
make [ |K(z, s; A)ds< o<1 for all a. Finally, the conditions of [2, (a),
)

D. 178] are satisfied and the 4( solutions of (3) are bounded.

N

then equation (4) is transformed into the canonical system

Prootf of Theorem II. If we let ¥ = (2io)"MZ, + Zy), y' = 2-Y(Z, — Zs),

4, = ioZ -+ [-—« (o) gy A)— 2-tw(x; 2)] Z, ~[—— (Rio)p(x; A) +2~1p(a; }.)] Zy,
Zy = —i0Z, - [@io)g(w; 1) + 2 (e M) Z, - [ io) ‘gl 1) — 21y (s 2)] %,

which is a special case of system (3). Moreover, we see that the conditions
of Theorem I are satisfied and, thus, Theorem IT is proved.

Note 3. It is not possible to give adequate references to the subject.’
Nevertheless, we may mention here the papers of G. Cavramar [1] and of
D. Cavnrco [2] for completely independent quantitative conditions for boun-
dedness or unboundedness of the solutions of the equation " + px)y’ - g(x)y =
=0, p, ¢ continuous and periodic, and to the recent paper of C. Taax [13]
on the self-adjoint second order differential equation with coefficients L-inte-
grable in cach finite interval.
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