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K. DEvI SixceuH(¥*) and R. S. Mismwra (%)

Infinitesimal Deformations of a Riemannian Space. (*%)

The object of this paper is to study the infinitesimal deformation of
Riemannian spaces under the transformations defined by

pi=ai-t g Ax).

1. — Deformations of 7.

Let V, be n-dimensional Riemannian space with fundamental metric ten-
sor ¢;{x), whose differentiability class is at least two. We consider an infinites-
imal deformation defined by

(1-1) zi= 2+ g Aia),

where ¢ in an infinitesimal constant and Ai(z) is a vector field, whose differen-
tiability class is at least two. '

The deformed tensor field of any tensor field, say, 7%, is defined by (K.
Yaxo and 8. Sasaxz [4] (1) ‘

L mt A I Loan kol o oqloak L oml gk
Ti=1T,;+ LT;= Tﬁ-r e (T .4 Tﬁl!,‘. : l,:j/t,i:e lik/»:i),

(*) Address: Mathematics Department, Delhi University, Delhi, India.
(*)' Address: Mathematics Department, Delhi University, Delhi, India.
(**) Received August 8, 1955.

(1) Number in brackets refer to « References » at the end of the paper.



80 K. DEVI SINGH and R. 8. MISIIRA
where L before a tensor field stands for the Lie derivative of that tensor field

with respect to the infinitesimal deformation (1-1) and commna ( ») followed by an
mde\ denotes covariant derivative with respect to the (HRISTOFFEL symbols

I . -
1 ii] (:‘a,-lcula-ted with respect to g,;. Thus the fundamental metrie tensors g:; and

g7 deform into g,; and g" rvespectively, such that

g (zz gi,+ & (;*i,j”:” )*f,i)
[ 7

( [ z] — & (‘(/1'14 Z’_.jh _1__ '(/h. j):'f").

h Y,
Also the CHRISTOFFEL symbols {il;‘} deform into { . } such that
« i
(T. SUuGURT [2]) ’ !

‘ b I
(1-3) {g;}x{ij}*g( s g 29).

The Riemannian space 7, with fundamental tensors g,;, and ¢’ and the

coefficients of connection { .t is called the deformed space of the Riemannian
i
space V. !
If w? is any vector in V,, then its deformed vector wiis given by
o ny < .
wi=u -+ & (u AF —utlh).
Therefore, using (1-2),
giwini= g+ & (A ;- 25 J[wm & (ui A i— w)[w -+ & () r— urd] )] =
= guunl -+ e [ AT 4w 20) — g(wintdl, 4 wiurdl) 4 Wl 4 250)] =
= g+ & [(gu009) , AF].

If the vector u is of constant magnitude, then
U= g 4= constant

and hence-

(gosuiu?) 1 F= 0. , e
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Therefore
Gei P W= g uiud,

Hence:

When the space V, admits a one-parameter group of motions generated by an
infinitesimal transformation (1-1), a vector of constant magnitude is deformed into
a-vector of the same magnitude.

Tf the vector Af is deformed into a vector 1%, then
7.1':: 2.2+ & ()\.jk}o,k"" ;Lk)ufk) = Ai’

hence:

If the space V, admits a one-parameter group of motions generated by an in-
finitesimal transformation m'= z'- ell, the vector A' deforms into itself.

Let e, (h=1,2,...,n) bean othogonal ennuple of unit vectorsin V,. The

deformed vector of ¢}, is ¢;, such that

(1-4) e = ey & (e Ar— e dl)

Therefore

gii ey —éi:/: [(/u‘r & (Ai+ A5.0] [C£/+ & (e, A7— el?;'lfp)] [+ e (’z!,zll“‘ ezi/}‘.jz)] =

noy i i il 95 T AT I S
— (S]i “%" & [(!],-7 (’;l/ 6]:1.[!)!],)."—‘" .(],-; cklr Gh,/ )le'—“ {],‘,‘ C’;L/ 0;1/ )u,ﬂ“f' (’z/ez/(},,’,j“‘ )vj;i)] = 5,t s

where 8 are KRONECKER deltas. Hence:

When the space V, admils a one parameter group of motions generated by
an infinitesimal transformation (1-1), an orthogonal ennuple in V, is deformed
into an orthogonal ennuple.

Let z* and #?- da’ be two consecutive points in V,, the distance between
them being ds, so that

ds?': .(]ii dml dm’..

Tt »* and 2*-- dz' ave the two points in V,, corresponding to #¢ and o' -+
- da' in V,, the distance ds between them is given by the relation

ds= g,; do* da’.

6. — Rivista di .Matematica.
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Therefore
ds? ==
=[gi+ & (A ;A0 j[Aw 4 @{ (yd:;"’)’k).’“—— RELYAN }][da)f+ e (dw?) Jo— dwd, }] =

= ds*+ ¢ [(g,deidn’) Al (];1:"d:nflf,cg i — gudwidetd! + dwdad(2, ;- A0 =
o 2 o .
= ds*+ ¢ o (ds)*Ab=ds*+ 2¢ ds v,

where o is the derivative of ds along the vector Ak
Hence to the first order of smallness

ds\2 2e
il R R
(ds) Tas

ds £y
=1 hik
ds - ds’
and
_ ds -1 &
(1-3) s At

2. - Riceci’s coefficients of rotation.

Let ey (b =1, 2, ..., n) be the unit tangents to the n congruences of an or-
thogonal ennuple in a Riemannian V,, then from § 1 the deformed vector e
(h =1, 2, ..., n) will also be the unit tangents to the n congruences of an orthog-
onal ennuple in V,,. Hence RIcor’s coetficients of rotation 4, in 7, are given
by '

(2-1) Yuer= €n)y; Crys 6";/ s

where semicolon (;) followed by an index denotes covariant derivative with
respect to V,, and E,"l,;,. is given by

(2 -2) 6;:/ R ah/ i + e (eh/,akz h/ i eh/ z)'l ).
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Also 7}; and ?1’ are given by the relations

(2'3)' Oy == "’1:_/1"‘“ & ((*1.-;'i‘;/".j—%~ (}kﬂﬂ.’li) s
(2-4) - ey== e+ & ((‘;/,,;/',’J—~— AL .

Now using (2-2), (2-3) and (2-4), the equation (2-1) assumes the form

. - ) 0
(2-5) Yner= Yo € Py (Ynie) A7,
where y,,, are the Riccr’s coefficients of rotation in V.
From (2-5) it follows that y,, is the deformed scalar of Yua - Hence:

The deformed scalar of the Ricci’s cocfficients of rotations in Va are
Ricei’s coefficients of rotation in V, .

Also the following results follow from the é'('iuzi-yti‘on (2-5):

When the space V., admits a one-parameter group of motions gencrated by an
infinitesimal transformation (1-1), then tf the curves of the congruence whose unit
tangent is ey be geodesies in V., the curves of the congruence in ¥V, whose wnit tan-
gent is ey will also be geodesics.

When the space V, admits @ one-parameter group of motions generated by an
infinitesimal transformation (1-1), then if all the congruences of an orthogonal
ennuple are normal in V,, so are all the congruences of an orthogonal ennuple in
V.. »

When the space V,, admits a one-parameter group of motions generated by an
infinitesimal transformation (1-1), then if the congruence e, is irrotational in V,,
s0 s the congruence Eh/ in V,.

3. — Condition that a curve in 7, may deform into a curve.
Any vector w! of the deformed Riemannian space is of the form
(3-1) W=yl g (u’lkl"'——— u”/‘i’lp).

Let €' be a curve in V, and &, its unit tangent vector at the point P. When
the space V, is deformed into the space V,, under the transformation (1-1),
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let the curve ¢ deform into a curve (. Then the unit tangent to €', dz¥/ds is
given by

) _, dw o dids az P v w
(3-2) Ep=—= = - 0= (Em e —) (1 & _‘) é:mT £ (d9 . ?1)) .

ds ds ds 1s ds ds

Comparing (3-2) with (3-1), it follows that the condition that a curve ¢
may deform into a curve 18

iy 5:,) L o
_({;,' - ds u) 5(17 L)” 5(1; AP é:m 5”’7-
i.e.
dit 6;“ Y
La 9 . (£ B Y L.
(3-3) ds  oxk + &y ds

Thus (3-3) is the condition that a cwrve Cin V., may deform into a curve €™

when the space V, admits a one-parameter growp of motions generated by an infin-
itesimal transformation (1-:1). :

Tor deformation along the tangent, condition (3-3) reduces to

art

ds 5(” ds

i.e.
— :
Ey= & -

In what follows, we shall assume that (3-3) is satisfied, i.e. the curve Cis
deformed into the curve (.

4. ~ Parallel tangent deformation.
If &, is the unit tangent vector to the curve ¢, at the point P in V,, then
the unit tangent vector &, to the deformed curve (” at the corresponding
point P’ in V, is given by the relation (3-2), i.e.

dit Ty
(47'1) ’ - 5(1) 5(1)"'}' 5( a’g :n) .
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Let &, be a vector at a point P’, parallel to the vector &

w, at P, so that to
the first order of smallness

E i i e s : ) —_— {
(4-2) A { ik } ‘511)(‘/’7)—" wl) = &y—e AR &y, { ik } ’

i . .
where { }a:re the CHRISTOFFEL symbols of the second kind for V, at P.
ik

Now £,— &, is an infinitesimal vector, which we shall denote by O}, .
The condition that the tangent to the curve be displaced parallelly during the
deformation is that

i . ()5(1'”
A& =lm —= =0,
88—0 ds

where

as = Vg, @i—al) (7 — x') = ek,

4 denoting the magnitude of the vector with contravariant components A%
Subtracting (4-2) from (4-1) we get

o dit i P A‘ P
0f = 8(3; T { ik } A — T 5(1)) :

Hence the condition for parallel tangent deformation is

dit i . v,

i.e.
. Yoz
(4£-3) D= s £y

.where D now stands for the derived vector with regard to the curve C.
Condition (4-3) can be written in the form

‘ D2E,,=0 (x=2 3,.., n)
(4-4)

( DA 5(1)5"’? i

ds’
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Thus the equations (4-4) are the conditions that the tangents to a curve may
be displaced parallelly, when the space V, admits a one- parameter group of motions
generated by an infinilesimal deformation (1-1).

5. ~ Alternative forms for the condition of parallel tangent deformation.

A7 being a vector field in V,, can be expressed linearly in terms of any »
vectors, which do not lie in the same geodesic surface. TLet these n vectors be
a vector & tangent to the curve ¢ and n—1 vectors E (=2, 3,..,n

which are the first normal, the second normal, ..., the (n— 1 )™ normal respee-
tively to the curve, so that

(5'1) g } - z cal b( y?

a=1

where ¢,,== }.15(,,)i. The condition (4-3) now assumes the form

% T
. a/ / £t
(5’2) Z E(u) i ((u)l) g(m) Y T
=1 dé
i.e.
n
dey o Yo
5.9 LE e p e B
(5-27) ,;1( a5 S Ca ot & bm ds S

Multiplying (5-2) by &, (6 =1, 2, ..., n) and summing for ¢, we get

L fdey ; PR ‘ Y s
Z ( Em) <i:(ﬁ')i - "u; 5(«),1: §<1) ‘;(/f)z‘ == df Sy é(ﬂ)i,"

a=1\ ds

d(;/g/ . kid iy Y
s (2:1 Gl Yupr = 3 %
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which can be written in the form

[ dCl,f ' i y
- -+ Coi Vi1 = =
S d a==1 w ds

_ ds &
(5-3) <
(1([; 5 9
: z Cof Yupr =0 (B =2, 3, ..., n),
v ds “—

where y,,. are the Riccr’s coefficients of rotation (C. E. WRATHERBURN [3], p. 98).
Thus (5-3) is the alternative form for (4-3).
From (5-3) we have:

If ¢;== constant and the curve C is a geodesic, then the first variation of the arc
is zero.
If all the ¢’ are constants with ¢;= 0 and all the congruences of the orthogonal

ennuple are normal, then the deformation is parallel tangent deformation.

Also from FrexeT's formulae we have
D&l = Ey Etrry— Ky Stamny (=1, 2,...;, 03 ko= 0; ky=0),
where ky, ks, ..., k, are the first, second, ..., (n—1)® curvatures respectively,
of the curve € relative to the Riemannian space V.

Therefore the condition (5-2) can be expressed as

de,y o . L/ v
1{ ds Sz:(la) f ca/ (k'ugz“—{—l).— 7"(:—-1 é:(Za—l))} = a—; E(x) *

Since ky= k,= 0, this equation assumes the form
_ 2, [ de,, . |
(D"-L) z T /‘a—1 4 ]" u+1/ (a) 5(1)

Multiplying (5-4) by &, and summing for i, we get

P deyy

ds ds —k G-

Hence the condition (5-4) reduces to

doa/ i
Z ( ds ”’M krz—l clx ]"a C(x1~l/) E(a): 0 *
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Therefore the condition that A be a parallel tangent deformation is

deyy )
P ky ey — Iy ey
de ;
of == /173 04/—*]53 (32/
(5-5) ds
de,;
"‘d% - - k’n—l cn—l/ .

Thus (5-5) s another form of the condition of parallel tangent deformation.

If all the ¢’ are constants, then (5-3) is the condition that the curve be a

generalised helix (H. A. Havyprx [1]).
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