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Weak and Strong Cyclic Additivity. (*%)

Introduction.

The purpose of this paragraph 1s to glve the reader some of the historical
background of the problem which is considered in this p‘lper

Let @ = [0 <wu,w <1] be the unit square in the wv-plane and let L, be the
Euclidean wzyz-space. For T a continuous mapping from @ into F,, written
T:¢ — E; (the symbol == will be reserved for a mapping onto), let us denote
by A(T) the LEBESGUE area of the surface represented by T (T. RADO [4]).
The LEBESGUE area A(T) possesses remarkable cyclic additivity properties;
namely, if T =1Im, m: Q= 9N, l: O — E; is a monotone-light factoriza-
tion of T (G. T. WHYBURN [5]), then

(1) A(T) = A(lr ,m), 0 c 9,

where 7, is the monotone retraction from 9 onto a proper cyclic element
U of 9o and where the summation in (1) is extended over all proper cyclic
elements of Ol (T. RADO [4]).

For the proof of (1), T. Rap0 [4] considered a real-valued, non-negaiive
functional @(T) defined for each continuous mapping 7 from a fixed PEANO
space P into a fixed metric space P* Under, certain additional hypotheses on
D(T), T. Rap6 established

(2) D(T) = 3 D(r,m), C c Do,
for every continuous mapping 7 from P into P*.
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An important generalization of (2) was obtained by E. J. Mrcxre and T.
Rap6 [3]. In their paper, the writers considered wunrestricted factorications of
a continuous mapping 7' from P into P*,ie., T =sf, f . P — Do, ¢ ; Do — P,
where o is a PEANO space and f and s are continuous mappings from P into
Mo and from D into P*, respectively. With certain restrictions on the functio-
nal @(T), E. J. Mickre and T. Rapd proved the following result:

(3) . ([)(T) o= z (I)(S'}'cf), C C @K‘?g

for all continuous mappings 7' from P into P* and for all unrestricted factori-
zations s, f of 4.

In order to show that the LEBEsaUE area A(T) is alse cyclicly additive under
unrestricted factorizations of 7, two approaches suggest themselves. The
first one consists of establishing that 4(7) satisfies the conditions of B. J.
Mickre and T. RADO to ensure the application of their theorem to A(T). This

can indeed be done by a method similar to that used in T. RApO [4] to prove
(1). The second approach, the one followed by E. J. Mickis and T. RADO
[3], consists of making use of the fact that A(7) is already known to be cye-
liely additive under monotone-light factorizations of 7. These considerations
led then to the study of the problems outlined below.

Let & be the class of all continuous mappings 7 from a PEANoO space P into
a metric space P*, and let @ be a real-valued non-negative functional defined
for each T €. We shall say that @(T) is weakly additive if the following con-
dition holds. For T =1Im, m  P== D, 1. — P* a monotone-light fac-
torization of 7 €, we have

4) DT = > Dlrym), C c Do,

where 7, is the monotone retraction from i onto a proper cyclic element
¢ of M.

If T =sf, f1P =9, s:o —P* is an unrestricted factorization of
Te® and if O(T) satisfies

5) BT) =S Blsr,f), ¢ C Mo,

for every 7'e® and all unrestricted factorizations of 7', then we shall term
D (1) strongly additive. The problem now is to find conditions in order that
weak additivity implies strong additivity. In this connection, E. J. MICKLE.
and T. Rapo [3] obtained the following result:
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Theorem. Under the assumption that P is a unicoherent PrANO space, a
functional @(7) which is weakly additive and lower semi-continuous is also
strongly additive.

Since the above theorem arose from the study of the LEBESGUE area, the
condition of lower semicontinuity imposed upon the functional @(T) is not
surprising. The main result of this paper is the following: The condition of
lower semi-continuity of @(1') can be deleted, i.e., the conclusion of the above
theorem remains valid if @(T) is only weakly additive. It is also shown that
the condition that P be unicoherent cannot in general be omitted.

Since extensive use is made of the theory of A4-sets and proper cyclic ele-
ments of a PEANO space, it seemed advisable to include in the first two parts
of this paper the essential properties of 4-sets and proper eyclic elements.

I — A-sets and Proper Cyclic Elements.

Il - A metric space which is a continuous image of the unit interval
0 <t <1 is termed a Peano space. The following definition is due to G.
T. WHYBURN [5].

Definition. Let 4 be a non-degenerate subset of a PrANO space P,
i.e., A consists of more than one point. Then A will be called an A-set of P,
provided (i) 4 is closed in P, (ii) if P— 4 £ 0, and @ is a component of P — 4,
then the frontier of ¢ is a single point (in A).

It should be noted that the whole space P is also an 4-set of P.

12, - In this paragraph we shall state those properties which are needed
in the sequel. For the proofs the reader is referred to G. T. WHYBURN [5].
Let P a PrAxo space.

(i) Let F be a cyclic subset of P, i.e., ¥ and, for every. z € B, B —x is
connected. If A4 is an A-set of P such that 4 n F is non-degenerate, then
EcA.

(ii) Let & be a collection of A-sets of P. If H =n 4, 4 e €l is non-de-

generate, then H is an A-set of P.

(iii) Let & be a family of A-sets of P such that the intersection of any
two distinct A-sets of &l is either empty or else a single point. Then the collec-
tion & is denumerable.
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(iv) Let P* be a Praxo subspace of P, and let 4 be an A-set of P. If
P*n A is non-degenerate, then 4% = P*n 4 is an A-set of P* If P* is an
A-set of P and if 4% is an 4-set of .P*¥, then 4% is also an A-set of P.

(v) There exists a unique continuous and monotone retraction », from
P onto an A4-set 4 of P, ie., v, P=> 4 andr,(2) ==a for e A. Hence 4
is a PEANo subspace of P. ‘

Remark. Let 4 be an A-set of P and let A’ be an 4-set of 4. If r,
¥\, v, denote the monotone letl“bCLIOHS from P onto 4, 4 onto 4/, and P
onto A', respectively, then 7, _;1, 7,

1.3. — Definition: A non-degenerate subset ¢ of a PEaxo space P
will be termed a proper cyclic element of P if and only if € is a cyclic 4-set
of P.

Since the above definition is slightly different from the one given in G. T.
‘WnuyBURN [5], we shall prove in the followi ing three paragraphs the properties

of proper cyclic elements needed in the sequel

I4. - Lemma. Let I be a non-degenerate cyclic subset of a PrANO
space P. Then there exists a unique proper cyclic element ¢ of P such that
BEcdC.

Proof. Let & be the class of all A-sets of P containing B. Since P e d,
the class €l is not empty. Let 4, =n 4, A €. Since 4, is closed and non-
degenerate, A, is an A-set of P (L2 (ii)). We assert that 4, is cyclic. If we
deny this, there is a point x € 4, such that 4,—w» is not connected. Since
E — x is connected, let & be the component of 4,— x containing F —ax. De-
note by Fr, the frontier operation with respect to .4,. Then Fry(G) = z, and
A = G U is a proper closed subset of 4,. We now assert that 4 is an A-set
of A,. Let @ be a component 4, 4. Then Fr, (§)c 4 and Fr, (@) n G = 0.
Therefore, Fr, (@) =2, and by L1, 4 is an A4-set of 4,. Since 4,is an A-set
of P, there follows from 1.2 (iv) that A is also an 4-set of P. Since Fc 4 and
A is'a proper subset of 4,, we have a contradiction to 4,=n 4, 4 € . Hence,
A, is a cyelié A-set containing F, and hence A4, is a proper cyclic element.
The uniqueness follows from 1.2 (i).

15 - Lemma. Let 4 be an A-set of a PEANO space P. Then the proper
cyclic elements of A coincide with the proper cyclic elements of P which are
subsets of A.

Proof: The proof is an immediate consequence of 1.2 (iv).
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1.6 - From 1.2 (i) and L2 (iii) we infer the following further properties
of proper cyclic elements.

(i) Two distinet proper cyclic elements of a PEaxo space P are either
disjoint or else have a single point in common.

(ii) There is at most a denumerable number of proper cyclic elements

of a PEAwo, space P.

1.7. — The definition of an A-set and a proper cyeclic element given in L.1
and 1.3 is easily seen to be equivalent to the definition of an A-set and a pro-
per cyclic element of T. Rap6 [4].

i = Mappings of A-seis and Proper Cyclic Elements.

II.1. — For the proofs of the resulfs in this‘ipamgrafph the reader is referred
to B. J. MickLE and T. Rapo [3].

(i) Let m: P=>9 be a monotone mapping from a PEANO space P
onto o PEANO space Dilo. For every A-set 4 of P the following conditions are
satisfied.

(1) m is monotone on 4.

(2) & =m(4) is either an A-set or a single point.

(3) For the monotone retraction #, from P onto 4 and rq from 9o onto
a, mr, =rq m

(ii) Assume that P is a dendrite, ie., P is a PEANO space with no proper
eyclic elements. Let m : P=> Ollo be a monotone mapping. Then 9 is also
a dendrite. : '

(iiil) Let m: P=— 9Ko be a monotone mapping from a PEANO space P
onto a PEANO space Dlo. If @ is a proper cyclic element of D), then there exists
a unique proper cyclic element ¢ of P such that m(C) > @.

.2, — Let 1;: P= 9 be a light mapping from a PEano space P onto
a PEANO space Dl. For C a proper cyclic element of P, the set I(C) need not
be eyclic and hence need not lie in a proper cyclic element Of?@]tg. However,
if P is unicoherent, i.e., if for any two continua (connected closed sets) Iy, F,
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whose union is P, P, n F, is also a continuum, then we have the following
results.
(1) There is a unique proper cyclic element @ of e such that I(C) ¢ @.
(2) If r, is the monotone retraction from Ponto ¢, and if » @ is the mono-
tone retraction from 9 onto @ >1(¢), then Ir, = -r@Zrc.

For the proof of the above two statements, the reader is referred to 1. J.
MickLE [2].

I1.3. — Concerning non-unicoherent PEANO spaces we have the following

Liemma. Let P be a non-unicoherent PEANO space and let y be a simple
arc. Then there exists a continuous mapping 7' : P==>y such that, if T = Im,
M P== Mo, 1. Do=>y is a monotone-light factorization of T, o contains
at least one proper cyclic element (see LIEBErRKNECHT [1]).

Proof. There is no loss of generality by assuming that 4 coineides with
the unit interval I = [0 <& <1]. Since P is not unicoherent, there are two
continua 4, B of P such that AU B =P and 4 n.B = H U K, where H, K
are non-empty disjoint closed sets. Define T by

olp, H)
olp, H) + olp, K)’

T(p) == PEP,

where, e.g., o(p, H) denotes the distance from p to H. It follows that 7 is a
continuous mapping from P onto 7, and 7(p) = 6 if and only if p € H, T(p) =1
if and only if pe K. Let 7' =1im, m: P==> o, | Mo==1 be a monotone-
light factorization of 7. We assert that o is not unicoherent. For that pur-
_pose we will establish the following relation:

1) ' m{A) o m(B) = m(d n B).

Since m{d) n m(B)>m(4d n B) is obvious, let yem(d) nm(B). Since m is
monotone, m~}(y) is connected and m~'(y) n 4 0, m~y) n B 0. Since,
finally, P = A u B, there follows m~ (y)n A n B 0. Thus yem(4d n B),
and (1) is proved. Therefore, m(4) n m(B) =m(4A 0 B) == m(H) U m(K),
and m(H) n m(K) == 0. Since m(4), m(B) ave two continua whose union is
Mo, and since m(H), m(K) ave closed, we have that ®ife is not unicoherent.
However, every dendrite is unicoherent, and hence 9o contains at least one
proper cyclic element.

IT4. - Since a monotone image of a unicoherent PEANO space is again a
unicoherent PEANO space, we have in view of II.2 (1) and IL.3 the following
characterization of unicoherent PEANO spaces (see also LIEBERKNECHT [1]).
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Theorem. Let P be a PEANO space and let P* be a non-degenerate den-
drite. Denote by G the class of all continnous mappings from P into P*. Then
o

P is unicoherent if and only for every 7 € @, the middle space 9l in a mono-
tone-light factorization of 7' is a dendrite.

HI. - Weak and Strong Cyclic Additivity.

II1.1. - Let P be a fixed PrANO space and let P* be a fixed metric space.
Denote by & the class of all continnous mappings from P into P*.

Definition: An wunrestricted factorization of a continuous mapping
T € 8 consists of & PEANO space D, called middle space, and two continuous
mappings s, f such that f: P — Do, s Do — P¥, T =sf.

HI.2. - Let @(T) be a functional defined for every T € ® such that O(TI)
is real-valued and non-negative. For certain 7 € & we may have &(TL) =+ oo.

We shall say that @ satisfies the property oy or that @ is weakly additive
if for every T €@, O(T) = > P(lr,m), € C Olo, where T == lm, m . P=> o,
1: 9k — P* is a monotone-light factorization of 7', and where r, is the mono-
tone retraction from i onto a proper cyelic element ¢ of .

Let T ==1f, f: P — 9o, 1. D — P* be an arbitrary-light factorization of
T e, ie., tis a continuous mapping from P into a PEANO space D and [
is a light mapping from 9o into P* such that 7 =1f. We shall say that @
satisfies the property o, it O(T) == > D(r,f), € c o, for every T'e S and for
all arbitrary-light factorizations of 7.

In case D(T) = > D(s r, f), C C Olo, for every T'e & and for all unrestricted
factorizations 7 =sf, 1 P — O, $:9M — P*, we shall say that @ satis-
fies the property oy or that @ is strongly additive.

Remark. Assume that @ satisfies either one of the three conditions o,
o, oy . If the middle space 9l contains no proper cyclic elements, we agree
that @(T) = 0. In particular, if T € G is constant, then &(1) = 0. For then T
admits of a monotone-light factorization whose middle space reduces to a single
point, and hence contains no proper cyclic elements.

It is obvious that the property «, implies the property o, which in turn im-
plies the property o, i.e., a; —» o — o, . Concerning the converse implications,
we will establish the following results: always o, — o5, and in case P is uni-
coherent, o, — o .
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II.3. - Lemma. Assume that @ satisfies either one of the three condi-
tlons o, o, o, say o,. Let T =1f, fiP = Mo, I: Mo — P* be an arbitrary-
light factorization of 7 €. Assume that there is a denumerable number
of subsets { A, } of Do such that (1) for each i, 4, is either an A-set or a single
point of 9ite, (2) for each proper cyclic element € of O there is one and only
one 4, containing ¢. Then, if », denotes the monotone retraction from N
onto 4,, we have O(T) =3 G(l7,{).

Proof. Let K; be the class of proper cyclic elements of o contained in
A;. Let for Ce K, r, r, be the monotone retractions from A, onto ¢, and
from O onto (, respectively. From 1.2 (v) we have ';_'C ¥ =7, . Since for
each 4, Ir,f admits of an arbitrary-light factorization », JiP 4,14, - P
we have (see also L5),

2OPUrif) =3 T OUr,rif) =3 3 O(r,f) = > Dr,f) = D(T).

i i CEKR; i CER; cC

1.4 “—'"Theorem: If @ satisfies the property o,, then @ also satisfies the
property oy .

Proof. Let T =sf, {1 P — O, s: Do — P* be an unrestricted factor
ization of a mapping T €@, and let s =1, My, My Dfo==> Doy, 1, Ollp, ~ P*
be a monotone-light factorization of s. Then 7T =hLmf, mf:P — e,
I, 9o, — P*is an arbitra\rydight factorization of 7. We will show that

1) DT) = > B(s7,1), C C 9o,
where 7, is the monotone retraction from 9 onto a proper cyclic element ¢
of Ie.

Case 1. 9l is a dendrite. Since My . Do ==> Dllo, is monotone, we have
as a consequence of IL1 (ii) that O, is also a dendrite. Since @ satisfies the
property o, @(T) = 0. The right side of (1) is also zero, and hence (1) follows
in this case.

Case 2. If 9 is not a dendrite, let{ or } be the sequence of proper cyelie
elements of ®o. For each 4, let m,(C o =A,;. By ILl (i), A, is either a single
point or an 4-set of o, . If », denotes the monotone retraction from o,
onto A,, we have from IL1 (i), m, Py =i My

Hence sv, f =lmr, [ =Lr,mf Since each proper cyclic element (),
of O, is eon‘éa-ined in one and only one 4, (see ILY (iii)), the collection of
sets { A, } satisfies the conditions of IIL.3. Hence, since @ satisfies the property

T 0y

OT) = 3 Bllyrom,f) = 3 Dlsr, )
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IIL5. ~ Let T =1Im, m:P=>9No, 1.9 — P* be a monotone-light
factorization of 7'e . Assume that there is a PEANO space 9o, and two
monotone mappings m,, M, such that m =m,m, and m;: P = 9y,
my | Doy => Do. Let €, C; be the generic notation for a proper cyclie element
of ONo, Doy, respectively, and denote by #,, 7, the respective monotone
retractions.

Lemma. Under the above conditions, let K, be the class of proper cyclic
elements ¢, of O, for which m,(C,) is not a single point. If @ satisfies the
property o,, then

(1) D) = 3 D(lmyr, my), C,eK,.

Proof.

Case 1. ORe, is a dendrite. Since m, : Do, => Dilo is monotone, it follows
~from-IL1-(ii) that & is-also a-dendrite. ~Consequently, @(T) = 0. The right"
side of (1) is also zero, and (1) follows in this case.

Case 2. If 9, is not a dendrite, 1et{ 0} } be the sequence of proper cyclic
elements of O, . The set 4, = m,(C;) is either a single point or an A-set
of Ol (see IL.1 (i)). Moreover, if r; is the monotone retraction from 9 onto
4, we have m, roi =7, m,. Since in view of ILI (iii), the sequence { A,-}
satisfies the conditions of IIL3, we conclude that &(T) = > D r, m).

However, for each ¢, Ir,m = lr,mym; = Im,yrcim,, and hence
(2) DT = z (p(lmz'rg, M), C, C DN,

The formula (1) follows now from (2) by making the observation that f01
O ¢ Ky, l'myr, m is constant and hence D(Imy7, m,) == 0.

I11.6. — In the following we will have to restrict P to be a unicoherent
PEANO space. Let T =1f, f: P — O, 1.9 — P* be an arbitrary-light
factorization of a mapping 7€, and let f=1Im, m . P= @](917
l,: 9o, — Do be a monotone-light factorization of f. Then T =11, my,
my . P=> oy, 11, . Do, —P* is a monotone-light factorization of 7. dite,, being
a monotone image of a unicoherent PEANO space, is itself a unicoherent PEaNoO
space. If 0, is a proper cyclic element of 9,, then by IL2 there is a unique
proper cyclic element € of O such that ¢ 517,(C;). TFor a given proper cyclic
element C of 9o, let K, be the class of proper cyclic elements ¢, of ‘Nol such
that I, (0;) c €. We observe that K, may be empty.
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IIL.7. — Under the same conditions as IIL.6, let ¢ be a fixed proper cyclic
element of D, and let 7, be the monotone refraction from O onto €. Consider
the mapping », I, : Do, — €, and letr 1, = Iy Mgy My Doy ==> Doy, by} Do, — C
be a monotone-light factorization of », I, . For ¢, a proper cyclic element of
Doy, let 1, denote the monotone retraction from M, onto (.

Lemma: If @ satisfies the property o, then
(1) Dryf) = 2 P, my), C,eK,.

Proof. Since for ¢, e K, I,(0,) is a non-degenerate subset of ¢, K, is the
class of proper cyclic elements O, of Dl for which m, (C;) is not a single point.
Since L v, f =117, 1l my =11, m, m,, we infer from IIL3,

2) D7, f) = 2 DALymyr, my), C,eK,.

Since on C,e K, I, m, =7, I, =1, the formula (1) follows from (2).

I.8. — Theorem. Let P be a unicoherent Peano space. If D satis- -
fies the property o, then @ satisfies also the property o .

Proof. Let T =If, fI P -9, 1:9 — P* be an arbitrary-light fac-
torization of 7€, and let f =1, my, my . P=> Do, I, : D, = Dl be a mo-
notone-light factorization of /. We will show that

(1) DT) = > Pr,]), C ¢ Oo.

Case 1. 9l is a dendrite. Since P is unicoherent, and since f: P — Dl
is continuous, we have from II.4 that 9, is also a dendrite. Since @ satis-
fies the property oy, @(7) = 0. The right side of (1) is also zero, and hence
(1) follows in this case.

Case 2. If 9k is not a dendrite, let C be a proper cyclic element of o
and let us form the class K,. Since every proper cyclic element €, of 9,

is in one and only one class I, and since @ satisfies the property «,, we have
by L7,
2 Or,f) =2 2OUhr,m) = 3 D, m) =D(T).
eCM cC aEx, e CN,

IILY. — Theorem. Let P be a unicoherent Peano space. If D is weakly
additive, then @ is also strongly additive.

Proof: The proof follows from IIL.8 and INL4.
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II1.10. — Theorem: Under the asswmption that I is a non-unicoherent
Peano space and that P* contains « non-degenerate Peano space, there
ewists a functional @ which is weakly additive but not strongly additive.

Proof. Define a functional @ as follows. Let 7 =1lm, m:P=> M,
1: 9 — P* be a monotone-light factorization of T €. Define @(T) to be
the namber of proper cyclic elements in Oo. We observe that @ is well-defined,
since for every other monotone-light factorization of 7, the middle spaces are
homeomorphic (see T. Rapo [3]). Since P* contains a non-degenerate PEANO
space, we have a simple are p* in P* By 1L3 there is a continuous mapping
T e® such that 7:P== y* and the middle space Dl in a monotone-light
factorization of 7' contains a proper cyclic element. By definition, @(T) > 0.
However, T admits of an unrestricted factorization whose middle space is the
simple arc y*. Thus, if @ were strongly additive, we should have @(T') == 0.
Therefore, @ is not strongly additive.
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