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CHRISTOPH J. NEUGEBAUER (¥)

II. - A Cyclic Additivity Theorem
of the Lebesgue Arvea. (v

__Inwoduction.

This paper is the second in a series of three papers, and deals with a cyclic
additivity theorem of the LEBESGUE area, i.e., the theory developed in [3],
will now be applied to the LEBESGUE area. In order to simplify references,
the paper [3] will be referred to with the Roman numeral I followed, if
necessary, by an Arabic numeral indicating the specific paragraph in L

In his recent book, L. Cesari [1] introduced the concept of an admissible
set A in E,, where E, is the Buclidean plane. For the present it suffices to
observe that such an admissible set need not be a Praxo space in B,. For
(T, 4) a continuous mapping from an admissble set A c F, into the Kucli-
dean three space F;, L. Cesarr has defined the LEBEscuB area L(T, A) of
(T, A) (see [1; 5.8]).

If A is a simply connected JorDAN region in F,, and if (7, A) == sf,
fid -9, s:9Mo » F, is an unrvestricted factorization of (7, A4) in the
sense of E. J. Mickre and T. Rapd [2], then from [2] the following cyclic
additivity formula for L(T, 4) is available

1 LT, 4) =3 Lisrpf, A), 0 c Do,
where r; is the monotone retraction from Do onto a proper cyclic element.
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It an admissible set 4 is not a PEANO space in H,, then a formula similar
to (1) can be established by using the concept of an unrestricted factoriz-
ation of (I, A) as introduced in L9, ie., (7, A)=sf, f: 4 — DL*,
§ 1 Mo™ = Hy, Do*C O, The main result of this paper will be

(2) LT, 4) = 3 Lisrgf, Gy), CedK,

where 7, is the monotone retraction from 91® onto a proper cyclic element
C of Ole, where K is the class of proper cyclic elements associated with
(T, 4) = sf, and where G is the set associated with ¢ e K. For the above
terminology the reader is referred to I.12. In order to establish (2) it will
be sufficient to verify that L(T, A) satisfies the conditions of 1.8, with the
collection of PEANO spaces P replaced by the collection of all finitely connec-
ted polygonal regions in ,.

A Cyclic Additivity Theorem.

IL1. - A subset 4 of the Euclidean plane E, will be termed admissible
provided one of the following cases holds. (a) A4 is a simply connected JORDAN
region; (b) A is a finitely connected JORDAN region; (e) A is a finite union
of disjoint regions of the type (a) or (b); (d) 4 1is any open setin H,; (e) 4 is
any set open in a set of the type (a), (b), or (c). In particular 4 may be a
figure F, i.e., a finite union of disjoint finitely connected polygonal regions.
‘The reader is referred to [1; 5.1].

IL.2. - In this paragraph we will give some definitions and those
properties of the LEBESGUE area which are needed in the sequel.

(i) Given two continuous mappings (L, A4), (7', A') from admissible
sets 4, A" into By and A n A’ #0. For H a non-empty subset of 4 n 4/,
the number d = d(T, 1", H) =lu.b.| T(w)— T'(w) |, satisfies the following
weH -
properties: (a) 0 <d<oo; (b) AT, T, H) =d(1", T, H); (c) for any
(T:, 4;) (=1, 2,°3) and 0 s H = 4, n 4,n 45, we have d(T,, T,, H) <
<dT,, T,, H) + d(T,, T3 H) (L. Cmsarr [1; 5.3]).

(if) A sequence of continuous mappings (T,, 4,) (=1, 2, 3, ...) is
said to converge to a continuous mapping (7, 4), written (7,, 4,) = (T, 4).
or -simply T, — T, provided (a) {An} is a sequence of admissible sets
invading A, ie., Ad,cd,,,cAd, A%+ A, where an upper o denotes the
interior of a set; (b) d(T, T,, 4,) -0 as n— co (L. Cusart [1; 5.3]).
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(i) If 4 = F is a figure, then a continuous mapping (I, F) is called
quast-inear in I provided there is a finite subdivision § of F into triangles
on each of which T is linear. We have now the following lemma. Given any
continnous mapping (7, A4), there exists a sequence (7,, F,) (n =1, 2, ...)
of quasi-linear mappings from figures F, into F, such that (7, F) — (T, 4)
(L. CmsArr [1; 3.6 (iv)]).

Remark. Since (7,, F,) - (T, 4), we have F,cF.,cA, FO1 A°.
Let there be given a compact subset K of 4°. Then K c F° for all n large.

(iv) Let (7, F) be a quasi-linear mapping, and let S be any finite
subdivision of F' into triangles ¢ on each of which 7' is linear. The image under
T of each t€ S is a triangle (possibly degenerate) 4 c B,. Tf we denote by

| 4| the area of Ac B, then o(T, F) = 3| 4|, is termed elementary area
of (T, F) (L. Cesart [1; 5.7]). t€8

(v) Let (I, 4) be a continuous mapping from an admissible set 4 c K,
into #;. Denote by {(p} the collection of all sequences o =[(T,, F,),
(n =1, 2, ...)] of quasi-linear mappings from figures ¥, such that 7T, — T
and set

(T, A) =glb. liminf«(T,, F,).

PE{P) noow

L(T, 4) is called the Lebesgue area of (T,A4) and 0<L< -+ oo (L.
Cesarr [1; 5.8]).

(vi) If (7, A) is a continuous mapping from an admissible set A into
By, cand if 4, (n =1, 2, ...) is any sequence of admissible sets such thas
A,cdncd, A)1T A° then I(T, A,) - I(T, 4) as n — oo (L. CESARI
[1; 5.14 (in)]).

(vii) If (T, A) is a continuous mapping whose graph T(A4) is contained
in a finite system of straight lines, then I(7, 4) = 0 (L. CESART [1; 5.9]).

(viii) It (Iyy 4) (=0, 1, 2, ) 18 a sequence of continuous map-
pings such that T, — T,, then L(To, A)<hn1 inf I(T,, A4,) as n — oo
(L. Cmsart [1; 5.10]).

(ix) If an admissible set 4 can be written as the union 4, (1 =1, 2, ...)
of disjoint admissible sets with the property that each interior point of A is
interior to one A4, then L(T, A) =3 L(T, 4,) (L. Cesart [1; 5.14 (ii)]).
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(x) Let R, be a finitely connected JorDAN region (order of connectivity
is »), and let (T, R)) be a continuous mapping from R, into FE,. Then
T o=, v),y =ylu v), 2 =2u, v), (w, v)eR,. Consider the plane
mappings T,: y =ylu, v), 2 =2(u, v); To. & =ua(u, v), 2 =zu, v);
. w=wxu v)y =yu v); (i v)eR, . Assume that F is a closed subset
of R, such that T,(F) is of measure zero, ¢ ==1, 2, 3. Let « be an open subset
of R,, and let { 0} be the collection of components of « — E. Then as a special

case of L. Cmsart [1; 21.4 (i)] there follows

(1) VT, o) = V(T, a—B) = 3 W(T, 9),

(2) V(T:y o) = V(Tsy a—EB) =3 V(T 0) (i =1, 2, 3)

b

where the above .summations. are. carried . over..all cSe{d}. Here V(T 00)mn

denotes the GroOczE area of (7, «), and V(T,, «) the GEGozZE area of the plane
mapping (T, «) (see [1; 9.1]). TFor later application we state a corollary.

Let B be a closed subset of R, such that R, — F = o | §, i.e., «, f§ are non-
empty disjoint open subsets of B, — F whose union is R, —E. If |T(B)|=0
(¢ =1, 2, 3), then

3) V(T: R) =V(T: o) +V(Tiy ) (i =1, 2, 3),
(4) (T, R,) =V(T, ) + V(T, f).

(xi) Let (7, A) be a continuous mapping from an admissible set 4
into I;. Then V(T, 4) = L(T, A) (L. CeEsarr [1; 24.1 (1)]) . '

IL.3. — In this paragraph we shall briefly recall to the reader a eyclic addit-
ivity theorem due to E. J. MickLE and T. Rapo [2]. Let P be a PEANO space
and lIet P* be a metric space. Denote by § the class of all continuous map-
pings from P into P*. The following definition, already stated in I, will be
repeated here for the sake of convenience.

Definition: An wunrestricted faciorization of a mapping 7' € S consists
of a PEANO space 9N, called middle space, and two continuous mappings
s, f such that f.:P — 9, s:90 P T =sf.
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Definition: Two mappings 7', 7" in ¥ are termed a partition of a

mapping 7 €S provided there are non-empty closed subsets E', B of P
and a point p; € P* such that

(i) E uE =P,

‘ T(®), ael s Tw), ack’
Gy T =1 . - - @) =] -
lpo, rekl epo', rvely,

for every xe€ P.

Let @(T) be a real-valued, non-negative functional defined for each 7@
satisfying the following conditions [for certain 7'e®, @(TI) may be - col.

() D7) is lower semi-continuous in the following sense. If T, e
(n=0,1, 2, ...) and T, — 7, uniformly on P, then &(T,) < lim inf ¢(T,) for

e

(B) &(I) is additive under partition, i. e., if the mappings 7", 7" cons-
titute a partition of 7, then H{TI) = N1") + D(T").

() If Te® admits of an unrestricted factorization whose middle
space is a simple are, then @(T) =0.

Remark: It should be noted that (y) implies the statement: if T'e B
is constant, then @(T) = 0. In {2] the following theorem is proved.

Theorem. Let T =sf, [:P — o, §:9 — P* be an unrestric-
ted factorization of a mapping 7 €. For ¢ a proper cyclic element of O,
let 7o be the monotone retraction from 9l onto ¢. If a real-valued non-
negative functional @(7) defined for each T e satisfies the conditions («),
(f) and (y), then :

=S D(sref),  CCMo-

1.4, - Let us restrict now the PEANO space P to be a ﬁnitely' connected
JORDAN region R, in E,, the order of connectivity being », and let us replace
the metric space P* by the Buclidean three space ;. If & denotes again
the class of all continuous mappings 7 from R, into Zj;, then the LEBESGUE
area L(T, R,) is a real-valued, non-negative functional of T e®. The first
objective will be to establish that L(T, R)) is cyclicly additive in the sense
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of the Theorem in IL.3. The reader should observe that in case » — 0, i.e.,
R, is a simply connected JORDAN region, this result follows from [2], since
then R, is a unicoherent PEANO space. However, for » > 0, R, is no longer
unicoherent.

IL5. — We proceed now to verify that L(7, R ,) satisfies the conditions («)
(f) and (y) of IL.3.

The conditions («) is a consequence of the lower semi-continuity of L(7, R,)
(L2 (viii)).

IL6. -~ Lemma: IL(7T, R) satisfles the condition (p) of IL.3.

¥

Proof. Let T', 7" be a partition of & mapping 7 e<S. Then we have
two non-empty closed subsets B', E” of R, and a point Po € By  such that
E'ul =R, and

T ' wwéE’ - Tae), wel”

|
T (w) =1 T"(w) =
{ Do, we B, ! Do, wel.

If we set ' = B’ n E", then F 50 and T is constant on Z. The plane map-
pings 7' (¢ =1, 2, 3) introduced in IL.2 (x) then satisfy | T(E) | = 0.

Case 1: B'cE". Then 1" is constant on R, and hence (T, R) =0,
where as 7" =1 on R,. Therefore, I(T, R, = L(1", R)+ L(T", R,) .

¥

Case 2: B"— I 50, E —E 0. Then R,—FE = = [E' —(E' n
nEYu[B'—(B' nE")] =[E— E"|u [E— E'],and (B'— E") n (D” F’) == 0,
The sets B' — E", E"— E' are open in R, and hence they are admissible sets.
From .2 (x), (xi) we conclude that LT, R,) = LT, B'—E") + (T, B — E).
We assert that L(T, B — E") = L(T", ],,). Since T' is constant on the
closed set E’, the plane mappings T, (i =1, 2, 3) satisty | TyBE")| =0
(i=1, 2, 3). Hence I(T", R,)=IL(T", R,— E")=L(T', B'— B")==I(T, E' — "),
since 7" =T on E'. Similarly, (T, B — E') :L(T”, R,), and the proof of
the Lemma is complete. :

.

IL7. - Lemma: L(T, R,) satisfies the condition (y) of IL.3.

Proof. Assume that 7 admits of an unrestricted factorization T = sf.
fiR, 9, s:9e >, where Ol is a simple are. Without loss of gen-
erality we may assume that ©l coincides with the unit interval I o<,
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For each n divide / into » sub-intervals by the points k/n (k =0, 1, ..., n).
Define s, as follows:

(1) su(k/n) = s(k/n) (=0, 1, ..., n),
(2) s, 18 linear on each interval [(k—1)/n, k/n] k=1, ..., n).

In case s(k/n) = s[(k— 1)/n] for some %, let s, be constant on [(k—1)/n, kin].
Then s, is continuous on I and, setting T, = s, f, we have that T.(R,) is con-
tained in a finite system of straight lines. Therefore, by IL.2 (vii), (T, R,) = 0.
Since s, —+s uniformly on I, we have also 7', — T uniformly on R,. Hence

LT, R)<liminfI(T,, R,) =0. This completes the proof.

IL.8. — In view of IL5, II.6, IL7, we have the following theorem (see
11.3).

Theorem. Let ( T, R,,)Mbew a continuous mappmg from' a finitely con-
nected Jordan region R, into By. If T =sf, f:R, - e, $:9 — B, is
an unrestricted factorization of T, and if v, denotes the monotone retraction from-
Mo onto a proper cyclic element C of ONo, then

LT, R) =3 Lsreh R), Cco.

Remark. Let (7, R be a continuous mapping from R, into F,, and
let T =1Ilm, m B, ==, 1.9 — F, be a monotone-light factorization of
T. If»=0,ie.,if R, is a simply connected JorpAN region, then it follows
from T. RADO [4; V.2.54] that I(T, R,) >0 if and only if ® contains at
least one proper cyclic element.. A similar result for the case » > 0 is not true.

IL9. — Let &' be the class of admissible sets 4 c B, (see IL1) and let
& be the collection of all finitely connected polygonal regions in H,. Let
us denote by & the class of sets generated by 8 in the sense of L1, i.e., a
set 4 is a member of &l if either of the following holds:

(i) A is a figure (ILI).

(i) 1f A4 is not a figure, then there exists a sequence of figures {Fn}
such that foreach », F,c 4° and for any compact subset K of A°, there is an
integer n = n(K) with the property that K c FOc A° for all n>n..
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In view of IL2 (iii) we have the inclusion &' c&. 1In applying the
results of I, the fact that there arve sets in & which are not admissible does
not cause any difficulty (see IL10).

IL10. - Let & and & be given as in IL9, and denote by (3, &)
the class of all continuous mappings (7, 4) from A el into B,. If 4ed
is not admissible, then the non-empty set A4° is admissible (IL.1), and we
define I(T, A) = L(T, A°). This definition obtains its justification from the
fact that for every admissible set 4, IL(T, 4) = L(T, 4° (see [1; 5.9 (i))]).

The LEBESGUE area L{T, A) satisfies the conditions of I.8 which are listed
below.

(o) (T, A) is real-valued and non-negative. For certain (T, 4) € (T, &y,
we may have L(T, A) = 4 co.

(B) For every (I, 4)e(G, &), where A is a finite union of disjoint
finitely connected. JORDAN regions. By, ..., R,

L(Ta A) = iL(T, Rz)

Te=]

(see IL2 (ix)).

(y) For (T, A)e (S, &), and { F,} any sequence of figures satisfying
L9 (i), |

L7, A) =lm I(T, F,), as 0 - co..
(6) For A’,“A” two sets in €l for which 4” ¢ A’ and for (T, 4') € (S, &),
(T, A" < LT, A').
(e) Let R be a finitely connected JORDAN region, and let (T, R) be a con-
tinuous mapping from R into B,. If (T, R) =sf, IR - 9k, s:9b — yoR
is an unrestricted factorization of (7, R) (IL3), then

LT, R) = Y L(sr¢f, R), C C 9o,

where 7, denotes the monotone retraction from & onto a proper cyclip element
O of 9 (see IL8).
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Proof. It is only necessary to establish (). Since I, c A° there fol-
lows L(Z, F,) <IL(T, 4), and hence:

1) lim sup I(7, F,) < I(T, A).

L -0

Next we observe that by 1.2 we have a subsequence {F,,‘} satisfying the
condition IL9 (i) and F, cF,  (i=1, 2, 3, ..). Then F° 4 Ao, and
hence from IL2 (vi): ,

(2) (T, 4) =lm KT, F,).

For a fixed 4, there is by IL.9 (i) an integer n; such that F_c F° for all n >n, .

Since I(T, F,) < I(T, F.), n > n;, there follows L(T, F,) <liminf L(T, IF,).
Since this relation is valid for every 4, we obtain noe '

3) lim I(T, F,) < liminf (T, ).

7 —>o

(1), (2) and (3) yield the desired relation.

IL.11 — Let (3, &) be given as in IL10. For the sake of complete-
ness we state again the definition of an unrestricted factorization given in

1.9.

Definition. An unrestricted factorization of a mapping (7, 4)e
€ (@, &) consists of a PEANO space 9, 2 subset O* of M, and two
continuous mappings s, f such that: '

(1) §:4 - 9%

(2) s:9%* - H,
(3) T =sf.

We shall write (T, A4) =sf, f:4 —9Ok* s:9M* —H;, Mo*CMo.

Remark. Apart from the Remarks 1, 2 of 1.9, the following additio- .
nal observation should be made. Every (7, 4)e(G, &) admits of a
trivial unrestricted factorization of the following form. Let us denote by B,
the compact Tuclidean plane E,, i.e., the one-piont compactification of I,

20, — Rivista di Matematica.



w
©w
XS]

C. J. NEUGEBAUER

by adjoining co to B,. Thus Z, is a homeomorphic image of the unit
sphere, and E,is a PEANO space. If we denote by 7 the identity mapping, then
(T, A) =14, i.:4=>4, T:4—>E, AcH.

IL12. - Let (7, A)e(s, &), and let (T, A) =sf, f:4 — %
8. O™ — Hy, Oo* C Do be an unrestricted factorization of (7, 4). As in
112, let J¢ be the class of proper cyclic elements associated with (7, A4) = sf,
and let G, be the set associated with C € &, i.e., G is the union of all compo-
nents & of A satisfying r, f(G) C Ol*, and Jf is the class of proper cyclic
elements € of Ol for which there is at least one such component @ of A.
In view of L.15 and I1.10, we can state our main rvesult:

Theorem. Let (T, A) be a continuous mapping from a set A el into
By (see IL9).  Let (T, A) =sf, [: 4 - 9% s$:9* > H;, OR*C o,
be an unrestricted factorization of (T, 4). If for C a proper cyclic element of O,
we denote by ro the monotone retraction from Olo onto C, them we have the

following cyelic “additivity ~formula
LT, 4) = Y L(srq f, G, Ced,

where J{ is the class of proper cyclic elements associated with (T, A) = sf,
and where Gy is the set associated with C e g .
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