DIONISIO GALLARATI (*)

Una proprietà caratteristica della varietà di C. Segre prodotto di una retta per un S_p . (**)

- 1. In questa Nota estendo un risultato ottenuto in un mio precedente lavoro (¹), dimostrando il seguente teorema: Se una V_{p+1} differenziabile appartenente allo spazio S_r , con $r \ge 2p+1$, non è un cono e non si compone di spazi lineari S_{p+1} , e se i suoi S_{p+1} tangenti sono incidenti a p+2 rette congiunte a p+1 a p+1 da un S_{2p+1} , gli S_{p+1} tangenti di V_{p+1} incontrano ∞^p rette, ed anzi V_{p+1} è la $S_p-V_{p+1}^{p+1}$ razionale normale che al modo di C. Se gre rappresenta le coppie di punti estratti da una retta e da un S_p , e cioè il luogo delle rette che congiungono le coppie di punti corrispondenti in una omografia tra due S_p sghembi.
- 2. Sia dapprima V_{p+1} una varietà differenziabile, non cono e non composta di spazi lineari S_{p+1} , appartenente allo spazio proiettivo S_{2p+1} e non ad uno spazio inferiore, avente tutti gli S_{p+1} tangenti appoggiati a p+2 rette $a_0, a_1, ..., a_{p+1}$ congiunte a p+1 a p+1 da un S_{2p+1} .

L'ipotesi che V_{p+1} non sia un cono implica che queste rette appartengano all' S_{2p+1} che contiene V_{p+1} : in caso contrario, infatti, una almeno di esse avrebbe in comune con l' S_{2p+1} contenente V_{p+1} soltanto un punto; e per questo punto passerebbero tutti gli S_{p+1} tangenti di V_{p+1} .

^(*) Indirizzo: Istituto Matematico della Università, Genova, Italia.

^(**) Ricevuto il 15-XI-1958.

⁽¹⁾ D. Gallarati, Una proprietà caratteristica della varietà cubica a tre dimensioni dello spazio S_5 , Rend. Sem. Mat. Univ. Politec. Torino 17 (1957-58), 1-14.

Assumiamo il (2p+2)-edro A_0 , A_1 , ..., A_{2p+1} di riferimento per le coordinate proiettive ed omogenee x_i dei punti di S_{2p+1} in modo tale che $a_i \equiv A_{2i}A_{2i+1}$ $(i=0,\,1,\,...,\,p)$; e supponiamo che $L(\lambda_0,\,\lambda_1,\,...,\,\lambda_{2p+1})$ ed $M(\mu_0,\,\mu_1,\,...,\,\mu_{2p+1})$ siano due punti di a_{p+1} . Si vede subito che è lecito supporre $\lambda_{2i}=\mu_{2i+1}=1$, $\lambda_{2i+1}=\mu_{2i}=0$ $(i=0,\,1,\,...,\,p)$. Per ciò basta osservare che l'ipotesi che a_{p+1} sia sghemba con l' S_{2p-1} che contiene le rette $a_0,\,a_1,\,...,\,a_{i-1},\,a_{i+1},\,...,\,a_p$ assicura che $\Delta_i=\lambda_{2i}\mu_{2i+1}-\lambda_{2i+1}\mu_{2i}\neq 0$, ed operare l'omografia non degenere:

$$\left\{ \begin{array}{l} \varrho \; x_{2i}' = \; (\mu_{2i+1} \; x_{2i} - \mu_{2i} \; x_{2i+1}) / \varDelta_i \\ \\ \varrho \; x_{2i+1}' = - \; (\lambda_{2i+1} \; x_{2i} - \lambda_{2i} \; x_{2i+1}) / \varDelta_i \end{array} \right. \quad (i = 0, \; 1, \; ..., \; p) \; .$$

Ciascuno dei $\binom{p+1}{2}$ S_{2p-3} : $x_{2i}=x_{2i+1}=x_{2j}=x_{2j+1}=0$ è segato da ogni S_{p+1} tangente di V_{p+1} secondo un S_{p-2} ; e quindi il cono che proietta V_{p+1} da uno di questi S_{2p-3} ha dimensione 2p (2). Pertanto, se V_{p+1} è data mediante le equazioni parametriche:

$$(1) \quad x_0 : x_1 : \dots : x_{2p+1} = 1 : u_0 : \theta_2(u_0, u_1, \dots, u_p) : \dots : \theta_{2p+1}(u_0, u_1, \dots, u_p),$$

con $\theta_l(u_0, u_1, ..., u_p)$ funzioni continue insieme alle derivate prime in un campo assegnato, dovranno le quattro funzioni θ_{2i} , θ_{2i+1} , θ_{2j} , θ_{2j+1} (per ogni coppia di indici $i \geq 0$, $j \geq 0$; $\theta_0 = 1$, $\theta_1 = u_0$) essere proporzionali a quattro funzioni di due soli parametri essenziali.

In particolare 1, u_0 , θ_{2i} , θ_{2i+1} $(i \ge 1)$ devono essere proporzionali a funzioni di due soli parametri; e cioè u_0 , θ_{2i} , θ_{2i+1} devono essere funzioni di due parametri. Sono allora possibili due casi:

- 1°) una delle due funzioni θ_{2i} , θ_{2i+1} è funzione di u_0 e dell'altra; ad esempio $\theta_{2i+1} = \theta_{2i+1}(u_0, \theta_{2i})$;
- 2^{0}) una delle due funzioni θ_{2i} , θ_{2i+1} dipende solamente da u_{0} ; ad esempio $\theta_{2i} = \theta_{2i}(u_{0})$.

⁽²⁾ F. SEVERI e B. SEGRE, L'inviluppo di un sistema più volte infinito di curve piane, Ann. Mat. Pura Appl. (4) 8 (1930), 173-195. D. GALLARATI, Alcune osservazioni sopra le varietà i cui spazi tangenti si appoggiano irregolarmente a spazi assegnati, Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat. (8) 20 (1956), 193-199.

Possiamo supporre che per i primi k valori dell'indice i si verifichi il 2º caso, per gli altri il 1º caso. V_{z+1} potrà essere rappresentata con equazioni della forma:

$$(2) x_0: x_1: \ldots: x_{2p+1} =$$

$$=1:u_0:\theta_2(u_0):\theta_3:\ldots:\theta_{2k}(u_0):\theta_{2k+1}:\theta_{2k+2}:\theta_{2k+3}(u_0,\theta_{2k+2}):\ldots:\theta_{2p}:\theta_{2p+1}(u_0,\theta_{2p}).$$

I secondi membri delle (2) dipendono soltanto da u_0 , θ_3 , θ_5 , ..., θ_{2k+1} , θ_{2k+2} , ..., θ_{2p} ; e pertanto queste funzioni, che sono esattamente p+1, devono essere funzionalmente indipendenti, perchè altrimenti le (2) rappresenterebbero una V_q con $q \leqslant p$. Potremo allora assumere u_0 , θ_3 , θ_5 , ..., θ_{2k+1} , θ_{2k+2} , ..., θ_{2p} come nuovi parametri — che seguiteremo a chiamare u_0 , u_1 , ..., u_p — e scrivere le equazioni di V_{p+1} nella forma:

$$\begin{aligned} x_0 &: x_1 : \dots : x_{2p+1} = 1 : u_0 : \theta_2(u_0) : u_1 : \theta_4(u_0) : u_2 : \dots : \theta_{2k}(u_0) : u_k : \\ &: u_{k+1} : \theta_{2k+3}(u_0, u_{k+1}) : \dots : u_p : \theta_{2p+1}(u_0, u_p) . \end{aligned}$$

Se $k \geqslant 1$ queste equazioni rappresentano un cono di vertice $A_3A_5...A_{2k+1}$; sarà dunque k = 0, e V_{p+1} :

$$(3) x_0: x_1: \dots : x_{2p+1} =$$

$$= 1 : u_0 : u_1 : \theta_3(u_0, u_1) : u_2 : \theta_5(u_0, u_2) : \dots : u_i : \theta_{2i+1}(u_0, u_i) : \dots : u_p : \theta_{2p+1}(u_0, u_p) .$$

Si vede facilmente che gli S_{p+1} tangenti di una V_{p+1} rappresentabile con equazioni della forma (3) incontrano le rette $A_{2i}A_{2i+1}$ ($i \ge 1$): infatti le coordinate $x_0, x_1, ..., x_{2i-1}, x_{2i+2}, ..., x_{2p+1}$ sono funzioni dei parametri $u_0, u_1, ..., u_{i-1}, u_{i+1}, ..., u_p$ e cioè di p parametri soltanto, sicchè è solo p+2 la dimensione del cono che proietta V_{p+1} dalla retta $A_{2i}A_{2i+1}$.

Resta ancora da imporre che gli S_{p+1} tangenti di V_{p+1} si appoggino alle rette A_0A_1 ed LM .

3. – La condizione necessaria e sufficiente affinchè tutti gli S_{p+1} tangenti della V_{p+1} di equazioni (3) si appoggino alla retta A_0A_1 è che le funzioni $\theta_3(u_0, u_1)$, $\theta_5(u_0, u_2)$, ..., $\theta_{2i+1}(u_0, u_i)$, ..., $\theta_{2p+1}(u_0, u_p)$ siano integrali di un'equazione dif-

ferenziale della forma:

(4)
$$\varrho(u_0, u_1, ..., u_p) \left[X - \sum_{i=1}^{p} u_i \frac{\partial X}{\partial u_i} \right] + \sigma(u_0, u_1, ..., u_p) \frac{\partial X}{\partial u_0} = 0$$

nella funzione incognita X (ϱ e σ funzioni non entrambe identicamente nulle). Esaminiamo dapprima il caso $\varrho\sigma\equiv0$. Se $\varrho(u_0,\ u_1,\ ...,\ u_p)\equiv0$, la (4) si riduce a $\partial X/\partial u_0=0$; e V_{p+1} :

(5)
$$x_0: x_1: \dots : x_{2p+1} = 1: u_0: u_1: \theta_3(u_1): u_2: \theta_5(u_2): \dots : u_p: \theta_{2p+1}(u_p)$$
.

Se $\sigma(u_0, u_1, ..., u_p) \equiv 0$, la (4) diventa $X - \sum_{i=1}^p u_i \cdot (\partial X/\partial u_i) = 0$, e quindi $\theta_{2i+1}(u_0, u_i)$ è un integrale dell'equazione differenziale $X - u_i \cdot (\partial X/\partial u_i) = 0$, che dà subito $\theta_{2i+1} = u_i \cdot \varphi_{2i+1}(u_0)$; e V_{p+1} :

(6)
$$x_0: x_1: \dots : x_{2p+1} = 1: u_0: u_1: u_1 \varphi_3(u_0): u_2: u_2 \varphi_5(u_0): \dots : u_p: u_p \varphi_{2p+1}(u_0)$$

è una serie semplicemente infinita di spazi S_p incidenti alle rette $a_0, a_1, ..., a_p$. Sia ora $\varrho \sigma \neq 0$. La (4), ponendovi $X = \theta_{2i+1}(u_0, u_i)$, dà:

(7)
$$\varrho(u_0, u_1, ..., u_p) \left[\theta_{2i+1}(u_0, u_i) - u_i \frac{\partial \theta_{2i+1}}{\partial u_i} \right] + \sigma(u_0, u_1, ..., u_p) \frac{\partial \theta_{2i+1}}{\partial u_0} = 0$$

$$(i = 1, 2, ..., p).$$

Non può essere, per qualche valore di i,

$$\theta_{2i+1}(u_0, u_i) - u_i \frac{\partial \theta_{2i+1}}{\partial u_i} = \frac{\partial \theta_{2i+1}}{\partial u_0} = 0;$$

in tal caso, infatti, si avrebbe $\theta_{2i+1}(u_0, u_i) = k_i u_i$ (con k_i costante) e V_{v+1} apparterrebbe all' S_{2v} di equazione $x_{2i+1} = k_i x_{2i}$, contro le ipotesi. La (7) implica pertanto che la funzione $\tau = -\sigma/\varrho$ sia funzione delle sole due variabili u_0 , u_i ($i=1,\ 2,\ ...,\ p$), e cioè addirittura della sola variabile u_0 . Ne segue che le p funzioni $\theta_{2i+1}(u_0,\ x)$ sono integrali dell'equazione differenziale

$$X-x \frac{\partial X}{\partial x} = \tau(u_0) \frac{\partial X}{\partial u_0},$$

il cui integrale generale è $X=x\Omega[M(u_0)/x]$, ove Ω è simbolo di funzione arbitraria ed $M(u_0)=\exp\int \tau^{-1}(u_0)\;\mathrm{d}u_0$. Si ha dunque per V_{v+1} la rappresentazione:

$$x_0$$
; x_1 ; ...; $x_{2p+1} =$

$$=1:u_0:u_1:u_1\Omega_3[M(u_0)/u_1]:u_2:u_2\Omega_5[M(u_0)/u_2]:\dots:u_p:u_p\Omega_{2p+1}[M(u_0)/u_p];$$

od anche, ponendo $u_i/M(u_0) = u_i^* \ (i = 0, 1, ..., p),$

$$x_0: x_1: \ldots : x_{2p+1} = \alpha(u_0^*) : u_0^* : u_1^* : u_1^* \Omega_3(1/u_1^*) : \ldots : u_p^* : u_p^* \Omega_{2p+1}(1/u_p^*),$$

e cioè una rappresentazione della forma:

(8)
$$x_0 : x_1 : \dots : x_{2p+1} = u_0 : \xi_1(u_0) : u_1 : \xi_3(u_1) : \dots : u_p : \xi_{2p+1}(u_p) .$$

Poichè le (5) rientrano come caso speciale nelle (8) si ha intanto che: esistono in S_{2p+1} due famiglie di V_{p+1} , non coni e non composte di spazi lineari S_{p+1} , aventi gli S_{p+1} tangenti appoggiati a p+1 rette indipendenti a_0 , a_1 , ..., a_p . Una prima famiglia, dipendente da p funzioni arbitrarie di una sola variabile, è costituita da tutte le serie semplicemente infinite di spazi S_p incidenti alle rette a_i ; una seconda famiglia, dipendente da p+1 funzioni arbitrarie di una sola variabile, è costituita dalle V_{p+1} della forma (8).

4. – Cerchiamo ora la condizione cui devono soddisfare le funzioni θ_2 , θ_3 , ..., θ_{2p+1} affinchè la V_{p+1} di equazioni (1) abbia tutti gli spazi S_{p+1} tangenti appoggiati alla retta LM, ove L(1, 0, 1, 0, ..., 1, 0), M(0, 1, 0, 1, ..., 0, 1). Operiamo in S_{2p+1} l'omografia non degenere di equazioni:

omograma non degenere de equatione

$$X_0: X_1: ...: X_{2p+1} =$$

$$= x_0 : x_1 : x_2 - x_0 : x_3 - x_1 : \dots : x_{2i} - x_0 : x_{2i+1} - x_1 : \dots : x_{2p} - x_0 : x_{2p+1} - x_1,$$

che trasforma V_{p+1} nella V_{p+1}^* :

$$X_0: X_1: ...: X_{2p+1} =$$

$$=1:u_0:\theta_2-1:\theta_3-u_0:\ldots:\theta_{2i}-1:\theta_{2i+1}-u_0:\ldots:\theta_{2p}-1:\theta_{2p+1}-u_0,$$

ed L, M nei punti $L^*(1, 0, 0, ..., 0)$ $M^*(0, 1, 0, ..., 0)$.

Si vede subito che affinchè gli S_{p+1} tangenti di V_{p+1}^* siano tutti incidenti alla retta L^*M^* , e cioè affinchè tutti gli S_{p+1} tangenti di V_{p+1} siano incidenti alla retta LM, è necessario e sufficiente che le funzioni $\theta_{2i}-1$, $\theta_{2i+1}-u_0$ ($i=1,\,2,\,...,\,p$) siano 2p integrali (linearmente indipendenti) di un'equazione differenziale della forma:

(9)
$$\lambda X + \lambda_0 \frac{\partial X}{\partial u_0} + \lambda_1 \frac{\partial X}{\partial u_1} + \dots + \lambda_p \frac{\partial X}{\partial u_p} = 0.$$

Se V_{p+1} ha equazioni della forma (6), risulta: $\theta_{2i} = u_i$, $\theta_{2i+1} = u_i \varphi_{2i+1}(u_0)$; e la (9), ponendovi $X = u_i - 1$ fornisce $\lambda \cdot (u_i - 1) + \lambda_i = 0$ (i = 1, ..., p). Ne segue che affinchè gli S_{p+1} tangenti di V_{p+1} siano tutti appoggiati alla retta $a_{p+1} \equiv LM$ è necessario e sufficiente che le p funzioni $u_i \varphi_{2i+1}(u_0) - u_0$ siano integrali di un equazione differenziale della forma

(10)
$$\varrho(u_0, u_1, ..., u_p) \left[X - \sum_{i=1}^{p} (u_i - 1) \frac{\partial X}{\partial u_i} \right] + \sigma(u_0, u_1, ..., u_p) \frac{\partial X}{\partial u_0} = 0.$$

Ponendo, nella (10), $X = u_i \varphi_{2i+1}(u_0) - u_0$, si ha:

(11)
$$\varrho[-u_0 + \varphi_{2i+1}(u_0)] + \sigma \left[u_i \frac{\mathrm{d}\varphi_{2i+1}}{\mathrm{d}u_0} - 1\right] = 0.$$

Poichè i coefficienti ϱ , σ che compaiono nella (11) non sono entrambi nulli, risulta, per ogni coppia di indici $i, j \ (i \ge 1, j \ge 1)$:

$$\left|\begin{array}{ccc} u_0-\varphi_{2i+1}(u_0) & u_i\cdot(\mathrm{d}\varphi_{2i+1}/\mathrm{d}u_0)-1\\ \\ u_0-\varphi_{2i+1}(u_0) & u_j\cdot(\mathrm{d}\varphi_{2i+1}/\mathrm{d}u_0)-1 \end{array}\right|=0,$$

ossia:

$$\left[\varphi_{2i+1}(u_0)-\varphi_{2j+1}(u_0)\right]-u_i\frac{\mathrm{d}\varphi_{2i+1}}{\mathrm{d}u_0}\left[u_0-\varphi_{2j+1}(u_0)\right]+u_j\frac{\mathrm{d}\varphi_{2j+1}}{\mathrm{d}u_0}\left[u_0-\varphi_{2i+1}(u_0)\right]=0,$$

uguaglianza che deve sussistere identicamente rispetto ad u_0 , u_i , u_j . Deve allora essere $\varphi_{2i+1}(u_0) = \varphi_{2j+1}(u_0) = u_0$; e V_{p+1} :

$$x_0: x_1: \ldots : x_{2n+1} = 1: u_0: u_1: u_0u_1: u_2: u_0u_2: \ldots : u_n: u_0u_n$$

è la varietà di C. Segre: $V_{p+1} = S_1 \times S_p$.

5. – In modo simile si riconosce che condizione necessaria e sufficiente affinchè tutti gli S_{p+1} tangenti di una V_{p+1} di equazioni (8) si appoggino alla retta I_iM , è che le p funzioni $\xi_{2i+1}(u_i) - \xi_1(u_0)$ siano integrali di un'equazione differenziale della forma:

(12)
$$\varrho(u_0, u_1, ..., u_p) \left[X - \sum_{1}^{p} (u_k - u_0) \frac{\partial X}{\partial u_k} \right] + \sigma(u_0, u_1, ..., u_p) \sum_{0}^{k} \frac{\partial X}{\partial u_j} = 0.$$

Ponendo, nella (12), $X = \xi_{2i+1}(u_i) - \xi_1(u_0)$, si ottiene:

$$\varrho \Big| \xi_{2i+1}(u_i) - \xi_1(u_0) - (u_i - u_0) \frac{\mathrm{d}\xi_{2i+1}}{\mathrm{d}u_i} \Big| + \sigma \Big[\frac{\mathrm{d}\xi_{2i+1}}{\mathrm{d}u_i} - \frac{\mathrm{d}\xi_1}{\mathrm{d}u_0} \Big] = 0;$$

e perchè ϱ e σ non sono entrambi nulli si ha, per ogni coppia di indici $i, j \ge 1$,

ossia:

Ma quest'identità può sussistere solamente in due casi (3):

1°) se sono nulli tutti i complementi algebrici di una delle tre colonne del determinante primo membro;

2°) se esistono tre costanti τ_1 , τ_2 , τ_3 tali che le tre funzioni $\xi_1(x)$, $\xi_{2i+1}(x)$ $\xi_{2i+1}(x)$ siano integrali dell'equazione differenziale

(13)
$$\tau_1 + \tau_2 \frac{\mathrm{d}\omega}{\mathrm{d}x} + \tau_3 \cdot \left(\omega - x \frac{\mathrm{d}\omega}{\mathrm{d}x}\right) = 0.$$

⁽³⁾ Cfr. loc. cit. in (1), n. 5.

Nel primo caso, supposto ad esempio

$$\left\| \begin{array}{cccc} 1 & \mathrm{d}\xi_1/\mathrm{d}u_0 & & \xi_1 - u_0 \cdot (\mathrm{d}\xi_1/\mathrm{d}u_0) \\ & & & \\ 1 & \mathrm{d}\xi_{2i+1}/\mathrm{d}u_i & & \xi_{2i+1} - u_i \cdot (\mathrm{d}\xi_{2i+1}/\mathrm{d}u_i) \end{array} \right\| = 0 \; ,$$

e cioè $\mathrm{d}\xi_1/\mathrm{d}u_0 = \mathrm{d}\xi_{2i+1}/\mathrm{d}u_i, \; \xi_1 - u_0 \cdot (\mathrm{d}\xi_1/\mathrm{d}u_0) = \xi_{2i+1} - u_i \cdot (\mathrm{d}\xi_{2i+1}/\mathrm{d}u_i),$ esistono due costanti $l, \; m$ tali che $\xi_1(u_0) = lu_0 + m, \; \xi_{2i+1}(u_i) = lu_i + m, \; \mathrm{e} \; V_{p+1}$ appartiene all' S_{2p} di equazione $x_1 - x_{2i+1} = l \cdot (x_0 - x_{2i})$.

Nel secondo caso, se $\tau_3 = 0$ si ha subito $\xi_1(u_0) = hu_0 + k_1$, $\xi_{2i+1}(u_i) = hu_i + k_i$, $\xi_{2j+1}(u_j) = hu_j + k_j$ con h, k_1 , k_i , k_j costanti, e V_{p+1} appartiene all' S_{2p-1} di equazioni $(x_1 - hx_0)/k_1 = (x_{2i+1} - hx_{2i})/k_i = (x_{2j+1} - hx_{2j})/k_j$.

Se $\tau_3 \neq 0$ la (13) fornisce $\omega(x) = h \cdot \{x - (\tau_2/\tau_3)\} - (\tau_1/\tau_3)$, con h costante; e quindi ancora V_{p+1} appartiene ad un S_{2p-1} .

6. – Per giungere al teorema enunciato basta osservare che una V_{p+1} con gli S_{p+1} tangenti appoggiati a p+2 rette $a_0, a_1, ..., a_{p+1}$ congiunte a p+1 a p+1 da un S_{2p+1} , la quale non sia composta di spazi lineari S_{p+1} nè di coni, appartiene ad un S_{2p+1} contenente $a_0, a_1, ..., a_p$.

Che lo spazio S_r in cui V_{p+1} è immersa contenga le p+2 rette a_i è conseguenza immediata dell'ipotesi che V_{p+1} non sia composta di coni; riesce dunque $r \geq 2p+1$. Ma non può essere r > 2p+1, perchè altrimenti la proiezione di V_{p+1} da un generico S_{r-2p-2} di S_r sopra un S_{2p+1} sarebbe una V_{p+1}^* di S_{2p+1} avente tutti gli S_{p+1} tangenti appoggiati a p+2 rette generiche; onde V_{p+1}^* , e quindi la stessa V_{p+1} , sarebbe la varietà di C. Segre prodotto di una retta per un S_p .