LAMBERTO CESARI and TOGO NISHIURA

On Some Theorems Concerning the Equality of Lebesgue and Peano Areas. (*)

In § 24 of the book «L. Cesari, Surface Area, Princeton University Press, 1956 » a direct proof is given of the equality L = V, V = P, where L, V, P are the Lebesgue, Geöcze, Peano area of any given continuous mapping (T, A)from an admissible set $A \subset E_2$ into E_3 . The proof of § 24 of the book is based on the known relations between the area of a mapping and the area of its projections (S.A.; 1.4.L₁, and 18.10, i-v), and on certain preliminary theorems (L. CESARI, S.A.; 23.1.i, 23.3.i, 23.3.ii). These theorems are used also in the discussion of the representation problem (see Chapter X of the same book). In this paper we are concerned, mainly, with the latter three theorems which, for the convenience of the reader, are restated in § 1 as Theorems I, II, III. In the present paper two new theorems (IV and V) are proved. All these theorems (I-V) concern continuous mappings (T, A) of finite Geöcze area $V(A, T) < +\infty$ from an admissible set $A \subset E_2$ into E_3 . Theorem I and the more detailed Theorem III state that given any positive number ε , there exists an appropriate finite collection $[\pi]$ of nonoverlapping simple polygonal regions $\pi \in A$ and a corresponding collection [τ] of projection maps $\tau: E_3 \to E_2' \subset E_3$ from the threedimensional space E_3 onto two-dimensional spaces E_2' (one for every π) such that $V(A, T) - \sum V(\pi, \tau T) < \varepsilon$, where \sum ranges over all $\pi \in [\pi]$ (cf. Note at the end of § 1). Theorem IV of the present paper allows us to replace the above

Address of Authors: Department of Mathematics, Purdue University, Lafayette, Indiana, U.S.A..

^(*) This research was done on OSR contract AF 18(600)-1484.

inequality $V(A,T)-\sum V(\pi,\tau T)<\varepsilon$ of Theorem I with $V(A,T)-\sum v(\pi,\tau T)<\varepsilon$. An analogous relation subsists between Theorem III and Theorem V proved in the present paper. With either Theorem III or V one can prove Theorem II (cf. Remark 1 of § 4) which implies the basic equality L=V=P. Theorem II states that there is another continuous mapping (T^*,A) with $V(A,T^*)<+\infty$ such that $d(T,T^*,A)<\varepsilon$, T^* maps a finite collection [q] of disjoint squares $q\in A$ onto squares $Q\in E_3$, and

$$V(A, T) + \varepsilon > V(A, T^*) > \sum |Q| > V(A, T) - \varepsilon$$

where \sum ranges over all $q \in [Q]$. The proof Theorems IV and V are given in § 3. In § 2 we prove some lemmas concerning indices of finite systems of nonoverlapping simple polygonal regions $\pi \in A$. In § 4 we correct a few misprints and imprecisions which occurred in Chapter VII of the book Surface Area. This book will be referred to as S.A., followed by the number of the section.

§ 1. - Restatement of known Theorems.

Let (T,A) be any continuous mapping from an admissible set A of the w-plane E_2 , w=(u,v), into the p-space E_3 , p=(x,y,z), let (T_r,A) (r=1,2,3) be the plane mappings which are projections of T on the coordinate planes E_{2r} of E_3 (r=1,2,3). We shall denote by S any finite system of nonoverlapping closed polygonal regions $\pi \in A$, and, for each $\pi \in S$, we shall denote by τ_{π} an orthogonal linear transformation

$$\xi = a_{11} x + a_{12} y + a_{13} z, \quad \eta = a_{21} x + a_{22} y + a_{23} z, \quad \zeta = a_{31} x + a_{32} y + a_{33} z,$$

depending on π , from the p-space E_3 , $p=(x,\,y,\,z)$, into the p'-space E_3' , $p'=(\xi,\,\eta,\,\zeta)$ (a change of orthogonal coordinates depending on π). For each $\pi\in S$ and τ_π , let $T'=\tau_\pi\,T=(T',\,\pi)$ be the new mapping from π into E_3' and let $(T_r',\,\pi)$ $(r=1,\,2,\,3)$ be the plane mappings which are the projections of $(T',\,\pi)$ on the coordinate $\eta\,\zeta,\,\zeta\,\xi,\,\xi\,\eta$ -planes E_{2r}' of E_3' $(r=1,\,2,\,3)$. We shall denote by \sum any sum extended over all regions $\pi\in S$.

Theorem I (S.A.; 23.1.i):

Given any continuous mapping (T, A) from $A \subset E_2$ into E_3 with $V(A, T) < +\infty$, and any positive number $\varepsilon > 0$, there exists a $\delta > 0$, $\delta = \delta(T, A, \varepsilon) \leqslant \varepsilon$, such that any finite system S of nonoverlapping simple

131

polygonal regions $\pi \in A$ having indices d, m, μ all $< \delta$, has the following properties: to each $\pi \in S$ we may associate an orthogonal linear transformation τ_{π} such that

(a)
$$\sum V(\pi, T_3') > V(T, A) - \varepsilon;$$

(b)
$$\sum V(\pi, T_i) < \varepsilon \qquad (i = 1, 2);$$

(c)
$$\sum v(\pi, T) > V(T, A) - \varepsilon$$
.

Theorem II (S.A.; 23.3.i):

Given any continuous mapping (T, A) from $A \in E_2$ into E_3 with $V(A, T) < + \infty$ and any number $\varepsilon > 0$, there exists another continuous mapping (T^*, A) with the following properties:

- (1) $d(T^*, T, A) < \varepsilon;$
- (2) $V(A, T^*) < V(A, T) + \varepsilon;$
- (3) there is a finite system [q] of closed disjoint squares $q \in A$ such that T^* is linear on each q and $Q = T^*(q)$ is also a square $Q \in E_3$ of diameter $< \varepsilon$;
- (4) $\sum |Q| > V(A, T) \varepsilon$, where $\sum |Q|$ denotes the sum of the areas of all squares Q.

Theorem III (S.A.; 23.3.ii):

Given any continuous mapping (T, A) from any admissible set $A \subset E_2$ into E_3 with $V(A, T) < +\infty$, given any number $\varepsilon > 0$, there exists another number $\delta = \delta$ $(T, A, \varepsilon) > 0$ such that each finite system $[\pi]$ of nonoverlapping simple polygonal regions $\pi \subset A$ of indices $d, m, \mu < \delta$ has the following properties:

(1) To each $\pi \in [\pi]$ we may associate an orthogonal linear transformation τ_{π} from the p-space E_3 , $p=(x,\,y,\,z)$, into the p'-space E_3' , $p'=(\xi,\,\eta,\,\zeta)$, such that

$$\begin{split} \sum_{\pi} V(\pi, \ T_3^{'}) > V(A, \ T) - \varepsilon; \qquad \sum_{\pi} V(\pi, \ T_i^{'}) < \varepsilon \qquad \qquad (i = 1, \ 2); \\ \sum_{\pi} v(\pi, \ T) > V(A, \ T) - \varepsilon, \end{split}$$

where \sum_{π} denotes any sum ranging over all $\pi \in [\pi]$, where $T' = \tau_{\pi} T$, and T_r , T'_r (r = 1, 2, 3) are the projections of T, T' on the coordinate planes E_{2r} , E'_{2r} (r = 1, 2, 3) of E_3 and E'_3 .

^{3. -} Rivista di Matematica.

(2) There are two continuous mappings (T_0, A) , (T^*, A) such that

$$d(T_0, T, A) < \varepsilon, \quad d(T^*, T, A) < \varepsilon, \quad T = T_0 = T^* \quad on \quad A - \sum_{\sigma} \pi.$$

- (3) In each $\pi \in [\pi]$ there is a finite system $[G]_{\pi}$ of disjoint simply connected open sets $G \subset \pi$ and a corresponding system $[e]_{\pi}$ of the same number of simple closed polygonal regions $c \in G$ such that each G contains one and only one c and such that $T = T_0 = T^*$ on $\pi \sum G$, $T_0 = T^*$ on $\pi \sum c$.
- (4) For each $\pi \in [\pi]$ and $c \in [c]_{\pi}$ the curve $C: (T_0, c^*) = (T^*, c^*)$ has finite length and its projection C_3 on the ξ η -plane E_{23}' is contained in the boundary Q_0^* of a square Q_0 of the same plane E_{23}' and of diameter $<\varepsilon$; C_3 is homotopic in Q_0^* to Q_0^* itself counted a certain number m' > 1 of times (all clockwise or all counterclockwise depending upon T); i.e., $C_3 \cong m'Q_0^*(Q_0^*)$.
- (5) In each $c \in [c]_{\pi}$ there is a system $[q]_c$ of m disjoint equal squares $q \subset c^0$, $1 \leqslant m \leqslant m'$; T^* is linear on each q and maps these m squares onto m equal squares $Q \subset E_3$ parallel to and projecting on the square Q_0 of the plane E'_{23} .
 - (6) If $\sum |Q|$ denotes the sum of the areas of all squares Q, then

$$V(A, T) - \varepsilon < \sum |Q| \leq V(A, T^*) < V(A, T) + \varepsilon$$
.

Note. In I(a), $\sum V(\pi, T_3')$ replaces the misprint $\sum v(\pi, T_3')$ of (S.A.; 23.1.i). In II(3), $Q = T^*(q)$ replaces Q = T(q) of (S.A.; 23.3.i). In III (1), $\sum_{\pi} V(\pi, T_3')$ replaces $\sum_{\pi} v(\pi, T_3')$ of (S.A.; 23.3.ii); in III(4), m' replaces m; and in III(5), the specification $m' \geqslant m \geqslant 1$ is added.

§ 2. - Some preliminary considerations.

Let (T, A) be a BV mapping from an admissible set $A \subset E_2$ into E_3 . Then the multiplicity functions $N(p; T_r, A)$, $p \in E_{2r}$, (r = 1, 2, 3), are L-integrable in E_{2r} (S.A., 12.1). Hence, there is a function $\delta(\varepsilon) \geqslant 0$ for $\varepsilon \geqslant 0$, depending on (T, A) only, with $\delta(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$, such that

(h)
$$\int N(p; T_r, A) \leqslant \delta(\varepsilon)$$
, $(r = 1, 2, 3)$,

for any measurable set $h \in E_{2r}$ with $|h| \le \varepsilon$. As usual, we shall denote by ||C, C'|| the Fréchet distance of two oriented closed curves C, C'.

Lemma 1:

Let (T,A) be a BV mapping from any admissible set $A \subset E_2$ into E_3 , and S any finite system of nonoverlapping simple polygonal regions $\pi \subset A$ with $|T_r(\sum \pi^*)| < \varepsilon$, (r = 1, 2, 3), where \sum ranges over all $\pi \in S$. For each $\pi \in S$ let $[\pi_n]$ be any sequence of simple polygonal regions with $\pi_n \subset \pi_{n+1}$, $\pi_n^0 \uparrow \pi^0$, $||\pi_n^*, \pi^*|| \to 0$ as $n \to \infty$. Then we have

$$\overline{\lim_{n\to\infty}} \sum_{\pi\in\mathcal{S}} \left| u\left(\pi, \ T_r\right) - u\left(\pi_n, \ T_r\right) \right| \leqslant 2\,\delta(\varepsilon), \qquad (r=1,\ 2,\ 3).$$

Proof:

The set $T_r(\sum \pi^*)$ is compact. Hence, there exists a ϱ -neighborhood H_r of $T_r(\sum \pi^*)$ such that $|H_r| < \varepsilon$ (r=1,2,3), where $\varrho > 0$ may well depend on S and so H_r . There is a $n_0 > 0$ such that $||C_r, C_{nr}|| < \varrho, \ n \geqslant n_0, \ (r=1,2,3)$, where C_r : (T_r, π^*) , C_{nr} : (T_r, π^*_n) . Hence, by (S.A., S.3.i) we have $O(p; C_r) = O(p; C_{nr})$ for all $p \in E_{2r} - H_r$, (r=1,2,3). We deduce, for $n \geqslant n_0$,

$$\sum |u(\pi, T_r) - u(\pi_n, T_r)| = \sum |(E_{2r}) \int [O(p; C_r) - O(p; C_{nr})]| =$$

$$= \sum |(H_r) \int [O(p; C_r) - O(p; C_{nr})]| \leq \sum (H_r) \int [|O(p; C_r)| + |O(p; C_{nr})|] \leq$$

$$\leq 2 (H_r) \int N(p; T_r, A) \leq 2\delta(\varepsilon).$$

This proves Lemma 1.

Lemma 2:

Let (T, A) be any continuous BV mapping of the admissible set $A \subset E_2$ into E_3 . Let A' be an admissible set contained in A. Given $\varepsilon > 0$, there exists a $\delta = \delta$ $(A', \varepsilon) > 0$ such that for all systems S of nonoverlapping simple polygonal regions $\pi \subset A$ with indices d, m, μ (S.A.; 22.4) with respect to the mapping (T, A) less than δ , we have

$$U(A', T) - \sum' u(\pi, T) < \varepsilon,$$

$$U(A', T_r) - \sum' |u(\pi, T_r)| < \varepsilon, \qquad (r = 1, 2, 3),$$

where \sum' is the sum over all $\pi \in A'$, $\pi \in S$.

Proof:

Suppose the lemma is false. Then there is an $\varepsilon_0 > 0$ and a sequence of finite systems $S^{(n)}$ of nonoverlapping simple polygonal regions $\pi \in A$ with indices $d^{(n)}$, $m^{(n)}$, $\mu^{(n)} < n^{-1}$ and one of the mappings (T, A), (T_r, A) (r = 1, 2, 3),

say (T_1, A) , such tat $U(A', T_1) - \sum' |u(\pi, T_1)| \ge \varepsilon_0$. By virtue of Lemma 1 above, we may assume that each $S^{(n)}$ is a disjoint system of simple polygonal regions $\pi \in A^0$.

Let $G_{nr} = T_r(\sum^{(n)} \pi^*)$, where $\sum^{(n)}$ ranges over all $\mu \in S^{(n)}$. Then G_{nr} is compact and $|G_{nr}| \leq m^{(n)} < n^{-1}$. Hence for each n, there exists a $\varrho = \varrho$ $(n) < < n^{-1}$ such that if H_{nr} is the ϱ -neighborhood of G_{nr} then $|H_{nr}| < n^{-1}$, (r = 1, 2, 3).

Let F_n be a sequence of figures such that $\sum_{i=1}^n \sum_{n=1}^{(n)} \pi \in F_n^0$ $(n=1, 2, ...), F_n \in F_n^{-1}$, and $F_n^0 \uparrow A^0$. Since $S^{(n)}$ is a disjoint system of simple polygonal regions $\pi \in A^0$, $F'_n = F_n - \sum_{n=1}^{(n)} \pi^0$ is also a figure. Hence by (S.A.; 21.1.i) there is a subdivision $S_n = S'_n + S''_n$ of F'_n , where S'_n are the simple polygonal regions F_n and F''_n are the nonsimple polygonal regions F_n , such that the indices F_n^0 is defined above. For each simple polygonal region F_n^0 and each F_n^0 is uch that $F_n^0 = F_n^0$, we have $F_n^0 = F_n^0$. Therefore $F_n^0 = F_n^0 = F_n^0$ is a finite subdivision of F_n^0 into nonoverlapping polygonal regions with indices $F_n^0 = F_n^0$, $F_n^0 = F_n^0$.

By (S.A.; 21.3 Note) we have that $\sum_{n}^{(n)'}u\left(\pi, T\right) + \sum_{n}'u(q, T) \rightarrow U(A', T)$ and $\sum_{n}^{(n)'}|u\left(\pi, T_{r}\right)| + \sum_{n}'|u\left(q, T_{r}\right)| \rightarrow U(A', T_{r})$ (r = 1, 2, 3), as $n \rightarrow \infty$, where $\sum_{n}^{(n)'}$ ranges over $\pi \in S^{(n)}$, $\pi \in A'$ and \sum_{n}' ranges over $q \in S'_{n}$, $q \in A'$. Since $\mu^{(n)} \rightarrow 0$ as $n \rightarrow \infty$ implies that $U(A, T) - \sum_{n}^{(n)}u\left(\pi, T\right) \rightarrow 0$, we have $\sum_{n}'|u\left(q, T_{r}\right)| \leq \sum_{n}'u\left(q, T\right) \leq U(A, T) - \sum_{n}^{(n)}u(\pi, T) \rightarrow 0$ as $n \rightarrow \infty$ (r = 1, 2, 3). Hence $\sum_{n}^{(n)'}u\left(\pi, T\right) \rightarrow U(A', T)$ and $\sum_{n}^{(n)'}u\left(\pi, T_{r}\right) \rightarrow U(A', T_{r})$, (r = 1, 2, 3) as $n \rightarrow \infty$. But this is a contradiction since it was assumed that $U(A', T_{1}) - \sum_{n}^{(n)'}|u\left(\pi, T_{1}\right)| \geq \varepsilon_{r} > 0$ for all n. Hence Lemma 2 is established.

Since U(A, T) = V(A, T) and $v(\pi, T)$, (S.A.; 21.3), we have the following lemma as an immediate consequence of Lemma 2.

Lemma 3:

Let (T,A) be any continuous BV mapping of the admissible set $A \subset E_2$ into E_3 . Let A' be an admissible set contained in A. Given $\varepsilon > 0$, there exists a $\delta = \delta$ $(A', \varepsilon) > 0$ such that for all systems S of nonoverlapping simple polygonal regions $\pi \subset A$ with indices d, m, μ (S.A.; 22.4) with respect to the mapping (T, A) less than δ , we have

$$V(A', T) - \sum' v(\pi, T) < \varepsilon,$$

$$V(A', T_r) - \sum' v(\pi, T_r) < \varepsilon, \qquad (r = 1, 2, 3),$$

where \sum' is the sum over all $\pi \in A'$, $\pi \in S$.

§ 3. - Some new theorems.

We are now in a position to prove the following Theorems IV and V analogous to the Theorems I, III restated in § 1.

Theorem IV:

Given any continuous mapping (T, A) from $A \in E_2$ into E_3 with $V(A, T) < +\infty$ and any positive number $\varepsilon > 0$, there exists

- (a) a finite collection $\mathfrak{T}=\set{\tau}$ of orthogonal linear transformations τ of E_3 , and
 - (b) a number $\delta = \delta(A, T, \overline{\delta}, \varepsilon) > 0, \ \delta \leqslant \varepsilon$,

such that any finite system S of nonoverlapping simple polygonal regions $\pi \in A$, having indices d_{τ} , m_{τ} , μ_{τ} with respect to the mappings $(\tau T, A)$, $\tau \in \mathfrak{T}$, all less than δ has the following property: To each $\pi \in S$ we may associate a orthogonal linear transformation τ_{π} , $\tau_{\pi} \in \mathfrak{T}$, such that

(i)
$$\sum v(\pi, T_3') > V(A, T) - \varepsilon,$$

(ii)
$$\sum V(\pi, T_i) < \varepsilon \quad (i = 1, 2),$$

(iii)
$$\sum v(\pi, T) > V(A, T) - \varepsilon,$$

where \sum is the sum extended over all $\pi \in S$ and $T' = \tau_{\pi}T$.

Proof:

By Theorem I, given $\varepsilon > 0$, there exists a finite system γ of nonoverlapping simple closed polygonal regions $\nu \in A^0$ and a corresponding system $\mathfrak{F}' = \{\tau_{\nu}\}$ of orthogonal linear transformations τ_{ν} of E_3 such that

$$\left\{ \begin{array}{l} \sum_{\nu} V(\nu, \ T_3^{'}) > V(A, \ T) - \varepsilon/4 \, , \\ \\ \sum_{\nu} V(\nu, \ T_i^{'}) < \varepsilon/4 \quad (i = 1, \ 2) \, , \\ \\ \sum_{\nu} v(\nu, \ T) \quad > V(A, \ T) - \varepsilon/4 \, , \end{array} \right.$$

where $T' = \tau_{\nu} T$ and \sum_{ν} is the sum extended over all $\nu \in \gamma$. In the remaining, we will drop the subscript ν of τ_{ν} .

Let N be the number of simple polygonal regions $\nu \in \gamma$. For each ν and corresponding τ , determine a $\delta_{\tau} > 0$, $\delta_{\tau} < \varepsilon/(4N)$, such that, for any finite

system S of nonoverlapping simple polygonal regions $\pi \in A$, with indices d_{τ} , m_{τ} , μ_{τ} with respect to the mapping (T', A), $T' = \tau T$, less than δ_{τ} , we have

$$\begin{cases} V(\nu, \ T') - \sum' v(\pi, \ T') < \varepsilon/(4N), \\ V(\nu, \ T'_r) - \sum' v(\pi, \ T'_r) < \varepsilon/(4N) \quad (r = 1, \ 2, \ 3), \end{cases}$$

where \sum' is the sum over all $\pi \in S$, $\pi \subset \nu$ (Lemma 3).

Let $\overline{\mathcal{S}}$ be the system $\overline{\mathcal{S}}'$ with the identity transformation added if it is not in $\overline{\mathcal{S}}'$ already, and let $\delta = \min \left[\delta_{\tau}, \ \tau \in \overline{\mathcal{S}}' \right]$. Consider any finite system S of nonoverlapping simple polygonal regions $\pi \in A$ with indices d_{τ} , m_{τ} , μ_{τ} with respect to the mappings (T', A), $T' = \tau T$, $\tau \in \overline{\mathcal{S}}$, all less than δ . Then for each $\pi \in S$, let τ_{π} be determined as follows: If $\pi \in \nu$ for some $\nu \in \gamma$, then let $\tau_{\pi} = \tau$. If $\pi \notin \nu$ for any $\nu \in \gamma$, then let τ_{π} be the identity.

We have $\sum v(\pi, T) \ge V(A, T) - \mu \ge V(A, T) - \varepsilon$, since the identity transformation belongs to \mathfrak{F} . Hence (iii) is verified.

From (β) we have

$$V(v, T') - \sum' V(\pi, T') < V(v, T') - \sum' v(\pi, T') < \varepsilon/(4N)$$
.

Since $V(\nu, T') = V(\nu, T)$ and $V(\pi, T) = V(\pi, T')$ (S.A.; 22.3.i), we have

$$V(\nu, T) - \sum' V(\pi, T) < \varepsilon/(4N),$$

$$V(A, T) \geqslant \sum V(\pi, T) = \sum_{x} \sum' V(\pi, T) + \sum'' V(\pi, T) >$$

$$> \sum_{\nu} V(\nu, T) - \varepsilon/4 + \sum_{n} V(\pi, T) > V(A, T) - \varepsilon/4 - \varepsilon/4 + \sum_{n} V(\pi, T) =$$

$$= V(A, T) - \varepsilon/2 + \sum_{n} V(\pi, T'),$$

where \sum'' is extended over all $\pi \in S$ with $\pi \not \in \nu$ for any $\nu \in \gamma$. Therefore, $\sum'' V(\pi, T') < \varepsilon/2$ and $\sum'' V(\pi, T'_r) < \varepsilon/2$ (r = 1, 2). Hence

$$\sum_{r} V(\pi, T_r') = \sum_{r} \sum_{r} V(\pi, T_r') + \sum_{r} V(\pi, T_r') \leqslant \sum_{r} V(r, T_r') + \varepsilon/2 \leqslant \varepsilon/4 + \varepsilon/2 < \varepsilon$$

$$(r = 1, 2), \quad \text{and (ii) is verified }.$$

$$\sum v(\pi, T_3') = \sum_{v} \sum_{i} v(\pi, T_3') + \sum_{i} v(\pi, T_2') \geqslant$$

$$> \sum_{v} \sum_{v}' v(\pi, T_3') > \sum_{v} V(v, T_3') - \varepsilon/4 > V(A, T) - \varepsilon/4 - \varepsilon/4 > V(A, T) - \varepsilon;$$

and hence (i) is verified. Thus Theorem IV is proved.

Theorem V:

Given any continuous mapping (T, A) from any admissible set $A \subset E_2$ into E_3 with $V(A, T) < + \infty$, and any positive number $\varepsilon > 0$, there exists a finite collection $\mathfrak{T} = \{\tau\}$ of orthogonal linear transformations τ of E_3 and a number $\delta = \delta(A, T, \mathfrak{T}, \varepsilon) > 0$, $\delta \leqslant \varepsilon$, such that any finite system S of nonoverlapping simple polygonal regions $\pi \in A$, having indices d_{τ} , m_{τ} , μ_{τ} with respect to the mappings $(\tau T, A)$, $\tau \in \mathfrak{T}$, all less than δ has the following properties:

(1) To each $\pi \in \mathbb{S}$ we may associate an orthogonal linear transformation $\tau_{\pi} \in \mathbb{F}$ from the p-space E_3 , p = (x, y, z), into the p'-space E_3' , $p' = (\xi, \eta, \zeta)$, such that

$$\begin{split} \sum_{\pi} v(\pi, \ T_{\mathtt{3}}') > V(A, \ T) - \varepsilon, \qquad \sum_{\pi} V(\pi, \ T_{\mathtt{i}}') < \varepsilon \quad (i = 1, \ 2), \\ \sum_{\pi} v(\pi, \ T) > V(A, \ T) - \varepsilon, \end{split}$$

where \sum_{π} denotes any sum ranging over all $\pi \in \mathbb{S}$, where $T' = \tau_{\pi}T$, and T_r , T'_r , (r = 1, 2, 3) are the projections of T, T' on the coordinate planes E_{2r} , E'_{2r} , (r = 1, 2, 3) of E_3 and E'_3 .

(2) There are two continuous mappings (To, A), (T*, A) such that

$$d(T_0, T, A) < \varepsilon, \quad d(T^*, T, A) < \varepsilon, \quad T = T_0 = T^* \quad on \quad A - \sum_{\pi} \pi.$$

- (3) In each $\pi \in \mathbb{S}$ there is a finite system $[G]_{\pi}$ of disjoint simply connected open sets $G \subset \pi$ and a corresponding system $[e]_{\pi}$ of the same number of simple closed polygonal regions $c \subset G$ such that each G contains one and only one c and such that $T = T_0 = T^*$ on $\pi \sum G$, $T_0 = T^*$ on $\pi \sum C$.
- (4) For each $\pi \in \mathbb{S}$ and $c \in [c]_{\pi}$ the curve C: $(T_0, c^*) = (T^*, c^*)$ has finite length and its projection C_3 on the $\xi\eta$ -plane E'_{23} is contained in the boundary Q_0^* of a square Q_0 of the same plane E'_{23} and of diameter $<\varepsilon$; C_2 is homotopic in Q_0^* to Q_0^* itself counted a certain number m' > 1 of times (all clockwise or all counterclockwise, depending upon T); i.e., $C_3 \cong m'Q_0^*(Q_0^*)$.
- (5) In each $c \in [c]_{\pi}$ there is a system $[q]_c$ of m disjoint equal squares $q \in c^0$, $1 \le m \le m'$; T^* is linear on each q and maps these m squares onto m equal squares $Q \in E_3$ parallel to and projecting on the square Q_0 of the plane E'_{23} .
- (6) If $\sum |Q|$ denotes the sum of the areas of all squares Q, then $V(A, T) \varepsilon < \sum |Q| \leqslant V(A, T^*) < V(A, T) + \varepsilon$.

Proof:

The major portion of the proof of this Theorem is exactly the same as that of (S.A.; 23.3, ii.). The changes which are necessary occur in the first two paragraphs of the proof and are given below.

If V(A, T)=0, let $T^*=T_0=T$, \mathfrak{T} consist of the identity transformation and $\delta>0$ be arbitrary. Then for each system $\mathfrak{S}=[\pi]$ and for every region $\pi\in \mathbb{S}$ let τ_π be the only transformation in \mathfrak{T} and let all collections in the theorem be the empty collection.

Suppose now V(A, T) > 0 and let $M_0 = \max[1, V(A, T)]$, $\sigma = \min[1, (138 M_0)^{-1}\varepsilon, 3^{-1} M_0, (10 M_0)^{-1}\varepsilon^4]$; hence $0 < \sigma \le 1 \le M_0 < +\infty$. By Theorem IV (where we replace ε by σ^4), there exists a finite collection $\mathfrak{T} = \{\tau\}$ of linear orthogonal transformations τ of E_3 and a number $\delta = \delta(A, T, \mathfrak{T}, \sigma^4) > 0$, $\delta \le \sigma^4 < \varepsilon$, such that any finite system $\mathfrak{S} = [\pi]$ of non-overlapping simple polygonal regions $\pi \in A$, having indices d_{τ} , m_{τ} , μ_{τ} with respect to the mapping $(\tau T, A), \tau \in \mathfrak{T}$ all less than δ has the following property:

To each $\pi \in \mathbb{S}$ we may associate an orthogonal linear transformation $\tau_{\pi} \in \mathbb{S}$ from the *p*-space E_3 , p = (x, y, z), onto the *p'*-space E'_3 , $p' = (\xi, \eta, \zeta)$, such that

(C 12)
$$V(A, T) \ge \sum_{\pi} V(\pi, T) \ge \sum_{\pi} v(\pi, T) > V(A, T) - \sigma^{4},$$
$$\sum_{\pi} V(\pi, T'_{3}) \ge \sum_{\pi} v(\pi, T'_{3}) \ge V(A, T) - \sigma^{4}, \quad \sum_{\pi} V(\pi, T'_{4}) < \sigma^{4}$$

 $(i=1,\ 2)$, where $T'= au_\pi\,T$ and $T'_r\,(r=1,\ 2,\ 3)$ are the projections of T' on the $\eta\zeta,\ \zeta\xi,\ \xi\eta$ -planes .

§ 4. - Some remarks.

Remark 1:

Theorem II is included both in Theorem III as well as in Theorem V. Thus the present Theorem V gives a new proof of Theorem II. The short Theorem II was given in (S.A.; 23.1.i, 23.3.i, 23.3.ii) since the proof of the basic equality L=V=P (S.A.; § 24) is based only on the very simple statement of Theorem II.

Remark 2:

In (S.A.; 24.2) the first displayed formula on page 393 should read

$$\sum V(\pi, T'_3) \geqslant V(A, T) - \varepsilon$$
.

Then by the upper additivity of P, and by (S.A.; 9.11) we have

$$P(A, T) \geqslant \sum P(\pi, T) \geqslant \sum V(\pi, T'_3) \geqslant V(A, T) - \varepsilon$$

which replaces the second displayed formula on page 393.

Remark 3:

In (S.A.; 23.3), formula (12) on page 372, should be replaced by

(C12)
$$\begin{cases} U(A, T_r) \geqslant \sum_{\pi} |u(\pi, T_r)| > U(A, T_r) - \sigma^4 & (r = 1, 2, 3), \\ V(A, T) \geqslant \sum_{\pi} V_{\pi}(\pi, T) \geqslant \sum_{\pi} v(\pi, T) > V(A, T) - \sigma^4, \\ \sum_{\pi} V(\pi, T'_3) > V(A, T) - \sigma^4, & \sum_{\pi} V(\pi, T'_i) < \sigma^4 & (i = 1, 2), \end{cases}$$

where $T' = \tau_{\pi} T$, and T_r , T'_r (r = 1, 2, 3) are the projections of T and T' on the yz, zx, xy, $\eta\zeta$, $\zeta\xi$, $\xi\eta$ -planes respectively.

In (S.A.; 23.11) the lines from page 381, line 11 to page 383, line 8, contain a recourse to the previous formula (12) and should be replaced by the lines given below. No other major change is needed in (S.A.; §§ 23, 24).

We shall prove that

$$\sum_{\pi} \sum' V(\alpha, T_3') < 54 \sigma^4,$$

where \sum_{π} , \sum' range over all $\pi \in [\pi]$ and $\alpha \in [\alpha]_{\pi}'$. This relation replaces farmula (31) of pages 381 (S.A.; 23.11). For each $\alpha \in [\alpha]_{\pi}^{0}$ let us consider the finite collection $[k]_{\alpha}$ of those components k of α^{*} which separate $g \in \alpha$ from either U^{*} , or some set $\alpha' \in [\alpha]_{\pi}'$ (if any) with $\alpha' \in \beta' \in \beta' + \beta'^{0} \in \beta$, where β is the set β relative to α . Thus $[k]_{\alpha}$ contains the continuum $k_{0} = k = \beta^{*}$ (S.A.; 23.9) which separates g from U^{*} and may contain some more continua.

For each $k \neq k_0$, $k \in [k]_x$ we may consider the relative collections of ends η , of prime ends ω of k in α , and the ordered collection $[E_{\omega}]$ of the continua $E_{\omega} \subset k$. The mapping T is constant on each $E_{\omega} \subset k$, and the curve Γ : $(T, [E]_{\omega})$ is rectifiable. We shall denote by Γ_r , Γ'_r (r=1, 2, 3) the projections of Γ on the planes E_{2r} , E'_{2r} , (r=1, 2, 3), and by Ω_r , Ω'_r , the numbers

$$\varOmega_{r} = (E_{2r}) \int O(p; \ \varGamma_{r}), \quad \varOmega_{r}' = (E_{2r}') \int \ O(p; \ \varGamma_{r}'), \qquad (r = 1, \ 2, \ 3) \ .$$

By (S.A.; 8.11.i) we have

$$\Omega'_{r} = \sum_{s=1}^{3} \alpha_{rs} \, \Omega_{s}, \qquad \Omega_{r} = \sum_{r=1}^{3} \alpha_{rs} \, \Omega'_{r},$$

where (α_{rs}) is an orthogonal matrix. Hence

(C1)
$$|\Omega_r| \leq |\Omega_1'| + |\Omega_2'| + |\Omega_3'| \qquad (r = 1, 2, 3).$$

Now $\Gamma_3' \subset Q^*$ and we must have $O(p; \Gamma_3') = 0$, where p is the center of Q, $p \in [p]_\pi$, since otherwise we could include k in a simple polygonal region r with $\|C, \Gamma\|$ as small as we want, $C: (T, r^*)$, and hence also $O(p; C_3') \neq 0$ and finally, by (S.A.; 14.3.ii), there would be another set $g \in [g]_p$ in U relative to the same point p, a contradiction. This implies that $O(p; \Gamma_3') = 0$ for all $p \in E_{23}' - Q^*$, and finally $O(p; \Gamma_3') = 0$ for all $p \in E_{23}'$ and $\Omega_3' = 0$. Thus, by (C1),

$$|\Omega_r| \leqslant |\Omega_1'| + |\Omega_2'| \qquad (r = 1, 2, 3).$$

Let us prove that

(C3)
$$\sum_{i} |\Omega_{i}'| \leq V(\pi, T_{i}') \qquad (i = 1, 2),$$

where \sum^* is extended over all $k \neq k_0$, $k \in [k]_{\alpha}$, $\alpha \in [\alpha]_{\pi}^0$. Indeed we may consider, as above, disjoint regions r with $r \in \pi$, $r^0 \supset k$, and $||C, \Gamma|| \leqslant \tau$ with τ as small as we want. Then

$$O(p; C_i') = O(p; \Gamma_i')$$

for all points $p \in E'_{2i} - [\Gamma'_i]_{\tau}$, where $[\Gamma'_i]_{\tau}$ is the τ -neighborhood of the set $[\Gamma'_i]$. Since Γ'_i is rectifiable, the set $[\Gamma'_i]$ is compact and of measure zero (S.A.; 8.8.i). Then $|[\Gamma'_i]_{\tau}| \to 0$ as $\tau \to 0$ and thus we may assume τ so small that $|[\Gamma'_i]_{\tau}|$ is as small as we wish. Now we have

$$\begin{split} |\; \Omega'_{\iota} - u(r, \; T'_{i}) \; | \; &= |\; (E'_{2r}) \; \int O(p; \; \Gamma'_{\iota}) - O(p; \; C'_{\iota})] \; | \leqslant \\ \leqslant [\Gamma'_{\iota}]_{\tau} \; \int |\; O(p; \; \Gamma'_{\iota}) \; | \; &+ \; [\Gamma'_{\iota}]_{\tau} \; \int \; N(p; \; T'_{\iota}, \; \pi) \; . \end{split}$$

Since both $|O(p; \Gamma_i')|$, $N(p; T_i', \pi)$ are L-integrable in E_{i}' , we may take τ so small that both integrals above and therefore $|\Omega_i' - u(r, T_i')|$ is less than any given number. Since

$$\sum_{i=1}^{n} \left| u(r, T_i') \right| \leqslant \sum_{i=1}^{n} v(r, T_i') \leqslant V(\pi, T_i'),$$

we conclude that we have also

$$\sum^* |\Omega_i'| \leqslant V(\pi, T_i') \qquad (i = 1, 2),$$

and (C3) is proved.

By the last relation of (C12) and (C2), (C3), we have

$$\sum_{\pi} \sum^{*} |\Omega_{\tau}| \leqslant \sum_{\pi} \sum^{*} |\Omega'_{1}| + \sum_{\pi} \sum^{*} |\Omega'_{2}| \leqslant \sum_{\pi} V(\pi, T'_{1}) + \sum_{\pi} V(\pi, T'_{2}) \leqslant 2\sigma^{4},$$

that is

(C4)
$$\sum_{\sigma} \sum^{*} |\Omega_{\sigma}| \leq 2\sigma^{4}$$
 $(r = 1, 2, 3).$

We consider now the planes E_{2r} (r=1, 2, 3). The functions $|O(p; \Gamma_r)|$, $N(p; T_r, \pi)$, $p \in E_{2r}$, (r=1, 2, 3) are L-integrable. Hence there exists a number $\tau > 0$ such that, for every measurable set $h \in E_{2r}$, with $|h| < \tau$, we have

(h)
$$\int N(p; T_r, \pi) < M_1^{-1} \sigma^4$$
, (h) $\int |O(p; \Gamma_r)| < M_1^{-1} \sigma^4$, $(r = 1, 2, 3)$,

where M_1 is the total number of $k, k \neq k^0, k \in [k]_{\pi}, \alpha \in [\alpha]_{\pi}^0, \pi \in [\pi]$.

Let us consider the sets $H_r = \sum^* [\Gamma_r] \subset E_{2r}$. These sets are compact and of measure zero, hence there is a $\delta = \delta_0(\pi) > 0$ such that the δ -neighborhood $H_{r\delta} = [H_r]_{\delta}$ of H_r has measure $< \tau$ (r = 1, 2, 3). Finally, let $\delta_1 = \delta_1(\pi)$ be a number such that $|T(w) - T(w')| < \delta$ for all $w, w' \in \pi$, $|w - w'| < \delta_1(\pi)$.

By (S.A.; 19.7) for each $\alpha \in [\alpha]^0_\pi$ we can now define a closed polygonal region R_α with $g \in R^0_\alpha$, $R^*_\alpha \in \alpha$, such that, if $R_\alpha = (r_0, \ r_1, \ ..., \ r_r)$, then r^*_0 separates g from U^* and each $r^*_1, \ ..., \ r^*_r$ separates g from one continuum $k \in [k]_\alpha - k_0$ and hence from the regions $\alpha' \in [\alpha]^l_\pi$ considered above. We may also suppose that each point $w \in r^*$ is at a distance $< \delta_1(\pi)$ from the corresponding set $k \in [k]_\alpha$, and that $\|e, \Gamma\| < \delta = \delta_0(\pi)$, where $e: (T, r^*)$, and $\Gamma: (T, [E_w])$ is the curve Γ relative to k. Then we have $O(p; \Gamma_r) = O(p; e_r)$ for all $p \in E_{2r} - H_{r\delta}$, and then

$$\begin{split} & | \Omega_r - u(r, T_r) | = | (E_{2r}) \int [O(p; \Gamma_r) - O(p; c_r)] | \leq \\ & \leq (H_{r\delta}) \int | O(p; \Gamma_r) | + (H_{r\delta}) \int N(p; T_r, \pi) < 2M_1^{-1} \sigma^4 \,. \end{split}$$

Thus

$$|u(r, T_r)| \le |\Omega_r| + 2M_1^{-1}\sigma^4 \qquad (r = 1, 2, 3),$$

and, by (C 4), we have also

(C 5)
$$\sum_{\pi} \sum^{*} |u(r, T_r)| \leq 2\sigma^4 + 2\sigma^4 = 4\sigma^4 \qquad (r = 1, 2, 3).$$

Let us denote by $[r]_{\pi}$ the total collection of all regions $r=r_i$ $(i=1,\,2,\,...,\,r)$ relative to the polygonal regions R_{α} of the sets $[\alpha]_{\pi}^0$. Then the regions $r\in[r]_{\pi}$ are all disjoint and hence $R=\pi-\sum r$ is a polygonal region, where \sum ranges over all $r\in[r]_{\pi}$.

We shall now consider an arbitrary finite subdivision S = S' + S'' of R into simple polygonal regions $q' \in S'$ and nonsimple polygonal regions $q'' \in S''$ whose indices d, m, σ with respect to T are $< \delta = \delta_0(\pi)$ (S.A.; 21.1.i).

If we denote by B_r the sets $B_r = \sum' T_r(q'^*) - T_r(R^*)$, where \sum' ranges over all $q' \in S'$, we can suppose $|B_r| < \delta$ (S.A.; 21.1, and 12.6, Note 2). Finally, if B_{0r} are the sets corresponding to the set B_0 of (S.A.; 12.6), we have also $|B_{0r}| < 4\delta$. Here B_{0r} is the finite sum of circles $\gamma \in E_{2r}$, each containing at least one curve, say c_r'' , image under T_r , of a boundary curve of the regions $q'' \in S''$. Thus $O(p; c_r'') = 0$ for every $p \in E_{2r} - B_{0r}$ and for every curve c_r'' .

For each $q' \in S'$, $q'' = (q_0, q_1, ..., q_r) \in S''$ and $r \in [r]_{\pi}$ let us define the following oriented curves: e'_r : (T_r, q'^*) , $q' \in S'$; e''_{ri} : (T_r, q_i^*) , $q_i \in q'' = (q_0, q_1, ..., q_r) \in S''$; e''_r : $(T_r, r) r \in [r]_{\pi}$. Then we have $[e'_r] \subset B_r + H_{r\delta} + [C_r]$, $[e''_{ri}] \subset B_{0r}$, $[e''_{ri}] \subset H_{r\delta}$. By using (S.A.; 8.6.i) we can show that

$$\begin{aligned} O(p; C_r) &= \sum' O(p; c_r') + \sum'' \left[O(p; c_{r0}'') - O(p; c_{r1}'') - \\ &- O(p; c_{r2}'') - \dots - O(p; c_{rm}'') \right] + \sum''' O(p; c_r'') \end{aligned}$$

for all $p \notin [C_r] + B_r + B_{0r} + H_{r\delta}$ $(r=1,\,2,\,3),$ where \sum', \sum'', \sum''' range over all $q' \in S', q'' \in S''$ and $r \in [r]_\pi$. But $\sum'' [O(p;\,c''_{r0}) - O(p;\,c''_{r1}) - \ldots - O(p;\,c''_{rr})] = 0$ for the same p since each term of the sum is zero. Hence $O(p;\,C_r) = \sum' (p;\,c'_r) + \sum''' O(p;\,c'')$ for all $p \notin [C_r] + B_r + B_{0r} + H_{r\delta}$ $(r=1,\,2,\,3)$. By integration we have now

$$\begin{split} u(\pi,\ T_r) &= (E_{2r}) \int O(p;\ C_r) = (B_r + B_{0r} + H_{r\delta} + [C_r]) \int O(p;C_r) + \\ &+ (E_{2r} - B_r - B_{0r} - H_{r\delta} - [C_r]) \int O(p;C_r) = \\ &= (B_r + B_{0r} + H_{r\delta} + [C_r]) \int O(p;\ C_r) + \\ &+ (E_{2r} - B_r - B_{0r} - H_{r\delta} - [C_r]) \int [\sum' O(p;\ c_r') + \sum''' O(p;\ c_r'')] = \\ &= (B_r + B_{0r} + H_{r\delta} + [C_r]) \int O(p;\ C_r) + \\ &+ (E_{2r} - B_r - B_{0r} - H_{r\delta} - [C_r]) \int \sum' O(p;\ c_r') + (E_{2r}) \int \sum''' O(p;\ c_r'') - \\ &- (B_r + B_{0r} + H_{r\delta} + [C_r]) \int \sum''' O(p;\ c_r''') \end{split}$$

Finally, we have

$$| u(\pi, T_r) - (E_{2r}) \int \sum_{m} O(p; c_r^m) | \leq$$

$$\leq (B_r + B_{0r} + H_{r\delta} + [C_r]) \int | O(p; C_r) | + (E_{2r}) \int N(p; T_r; R) +$$

$$+ (B_r + B_{0r} + H_{r\delta} + [C_r]) \int N(p; T_r, \pi) .$$

Since $|B_r + B_{0r} + H_{r\delta}| < \delta + 4\delta + \delta = 6\delta$, $\delta = \delta_0(\pi)$, and W(R, T_r) = $V(R, T_r)$, we have

$$|u(\pi, T_r) - \sum^m u(r, T_r)| < 12 M^{-1} \sigma^4 + V(R, T_r) + ([C_r]) \int N(p; T_r, \pi)$$

$$(r = 1, 2, 3).$$

Hence, we hare

$$|u(\pi, T_r)| \leq \sum^m |u(r, T_r)| + 12 M^{-1} \sigma^4 + V(R, T_r) + ([C_r]) \int N(p; T_r, \pi)$$

$$(r = 1, 2, 3).$$

Finally by (C5) we have also:

$$\sum_{\pi} |u(\pi, T_{r})| \leq$$

$$\leq \sum_{\pi} \sum^{\#} |u(\pi, T_{r})| + 12 \sigma^{4} + \sum_{\pi} V(R, T_{r}) + \sum_{\pi} ([C_{r}]) \int N(p; T_{r}, \pi) \leq$$

$$\leq 16 \sigma^{4} + \sum_{\pi} V(R, T_{r}) + \sum_{\pi} ([C_{r}]) \int N(p; T_{r}, \pi) \leq$$

$$\leq 16 \sigma^{4} + \sum_{\pi} V(R, T_{r}) + \sum_{\pi} (\sum_{\pi} [C_{r}]) \int N(p; T_{r}, \pi) \leq$$

$$\leq 16 \sigma^{4} + \sum_{\pi} V(R, T_{r}) + (\sum_{\pi} [C_{r}]) \int \sum_{\pi} N(p; T_{r}, \pi) \leq$$

$$\leq 16 \sigma^{4} + \sum_{\pi} V(R, T_{r}) + (\sum_{\pi} [C_{r}]) \int N(p; T_{r}, \pi) \leq$$

$$\leq 16 \sigma^{4} + \sum_{\pi} V(R, T_{r}) + (\sum_{\pi} [C_{r}]) \int N(p; T_{r}, A).$$

Observe here that $|\sum_{\pi} [C_r]| \leqslant m_r \leqslant m$ and that this index is $< \delta$, where $\delta = \delta(A, T, \sigma^4)$ of (S.A.; 23.1.i). In the proof of (S.A.; 23.1.i), this δ was chosen in such a manner that for all measurable sets $h \in E_{2r}$ with $|h| < \delta$ we have $(h) \int N(p; T_r, A) < \sigma^4$ (r = 1, 2, 3). Hence we have that

(C6)
$$\sum_{\pi} |u(\pi, T_r)| < 17 \sigma^4 + \sum_{\pi} V(R, T_r) \quad (r = 1, 2, 3).$$

By (S.A.; 12.14) we have now

(C7)
$$V(R, T_r) + \sum_{r} V(\alpha, T_r) \leqslant V(\pi, T_r) \quad (r = 1, 2, 3),$$

where \sum' denotes any sum ranging over all sets $\alpha \in [\alpha]_{\pi}'$. Finally by comparing (C6) and (C7), and by force of (C12), we have

$$\sum_{\pi} \sum_{r} V(\alpha, T_{3}') \leqslant \sum_{\pi} \sum_{r} V(\alpha, T_{r}') = \sum_{\pi} \sum_{r} V(\alpha, T_{r}) \leqslant$$

$$\leqslant \sum_{r} \sum_{\pi} \sum_{r} V(\alpha, T_{r}) \leqslant \sum_{r} \sum_{\pi} [V(\pi, T_{r}) - V(R, T_{r})] =$$

$$= \sum_{r} [\sum_{\pi} V(\pi, T_{r}) - \sum_{\pi} V(R, T_{r})] \leqslant \sum_{r} [\sum_{\pi} V(\pi, T_{r}) + 17 \sigma^{4} - \sum_{\pi} |u(\pi, T_{r})|] \leqslant$$

$$\leqslant \sum_{r} [V(A, T_{r}) - \sum_{\pi} |u(\pi, T_{r})|] + 51 \sigma^{4} =$$

$$= \sum_{r} [U(A, T_{r}) - \sum_{\pi} |u(\pi, T_{r})|] + 51 \sigma^{4} \leqslant 3 \sigma^{4} + 51 \sigma^{4} = 54 \sigma^{4}.$$

Thus we have proved that

$$\sum_{\pi} \sum' V(\alpha, T_3') < 54 \sigma^4.$$

Remark 4:

In (S.A.; 23.7) formula (21) is referred to (S.A.; 20.5.i) (CAVALIERI inequality). As a matter of fact the latter is proved in (S.A.; 20.5) for a simple polygonal region π , while formula (21) concerns an open set $\alpha_0 \subset \pi$. Nevertheless, for every t, the set $\alpha_0 \in \mathcal{F}[D^-(t)]$ is closed, where

$$D^{\scriptscriptstyle -}(t) = [w \in \pi, \quad f[T(w)] < t] \quad \text{and} \quad \widetilde{\mathcal{F}}[D^{\scriptscriptstyle -}(t)] = \overline{D^{\scriptscriptstyle -}(t)} - D^{\scriptscriptstyle -}(t),$$

and formula (21) can be proved by the same process used in (S.A.; 20.5), where the generalized length of the contour $C(t, \alpha_0)$ relative to α_0 is defined to be the generalized length of the contour $C(t, \pi)$ relative to π restricted to α_0 . For an extension of the Cavalieri inequality for mappings from any admissible set, in particular from any open set, see «T. Nishiura, On the Cesari-Cavalieri inequality», to appear.