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R. E. FuLLErTON (¥

Prime Ends for Open Subsets

of Two Dimensional Manifolds-I. (*%)

1. - Introduction.

The theory of prime ends of simply connected plane domains was intro-
duced by CARATHEODORY and has been extensively studied by various authors
[1, 4, 6, 8, 12]. In particular, CESARI [2 a, b, ¢] and the author [7 a, b] have
made use of this theory in the study of surfaces defined over such domains.
Certain of these results can also be obtained for more general planar sets, in
particular, multiply connected JORDAN regions. OmSARI, in his book, Swurface
Area [2 a] has made fundamental use of these notions in developing a CAva-
LIERI type inequality which has proved to be a powerful tool in studying pro-
perties of surfaces. UrsEiL and Youne [12] have investigated in considerable
detail the structure of prime ends of plane domains. More recently results
have been obtained by CEsAri [2 d, e], NEUGEBAUER [10 a, b, ¢], FLEMING [5],
and others concerning surfaces defined over multiply connected plane domains
and over two dimensional manifolds. Hence a topological study of prime ends
for open subsets of two dimensional manifolds would seem to be of value.
One of the purposes of the present paper is to furnish basic results necessary
for the study of surfaces defined over two-manifolds. These results will be
used in future papers for the investigation of contours for surfaces defined
on two-manifolds and, in particular, for proving the CESARI-CAVALIERI type
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inequality for such surfaces. Further extension of known theorems on sur-
faces over a simply connected planar region to surfaces of this type seems
likely.

The principal results are concerned with defining an order o1 the prime ends,
defined in terms of accessibility properties. For open subsets of simply connee-
ted planar regions this was done by Cmsari {2 a] using his sets A4 (Q, y).
This method fails in the case of a two manifold and we introduce instead the
concept of admissible ends and prime ends as defined in section 3. In the last
section it is shown that this reduces to CESARI’s method in the case of a simply
connected plane region. : :

2. - Notations and basic definitions.

We shall be concerned throughout the paper with a fixed compact triangu-
~lable two-dimensional metric-manifold M. 3 may-be orientable or nonzorien:
table and may or may not have a boundary. Thus to each point p € M .there
exists an open subset N, ¢ M which is homeormophic either to an open disk
in the plane whose center is the counter image of p or to an open half disk
in the plane plus its bounding diameter with p the image of the mid-point of
the diameter. Neighborhoods &, of the above type will be called co-ordinate
neighborhoods since, if desived, it is possible: to introduce local co-ordinate
systems at each point of 3. The structure of all such twomanifolds is known [9]
and, ‘in particular, M is known to be homeomorphic to a closed disk in the
plane -with a certain finite number of ares of its circumference identified in
pairs. Frequent use will be made of this type of representation of I,

“We shall also make considerable use of the theory of prime ends of plane
domains in building up locally a prime end theory for open subsets of mani-
folds. There are.several definitions of ends and prime ends [1, 2 a]. The de-
finition used here is that used by CmsARI [2 a] which depends upon acecessibility
properties of boundary points. If 4 is a simply connected bounded open sub-
set of the euclidean plane, pe A*, 4* the boundary of 4 and if C is an arc
ending at p and having its other points in 4, then C is said to define an end
of A. Tf ‘C’ is another arc in 4 u (p) with end point p, then ¢’ is equivalent to
Cift 1) ¢ C'cdu(p), (2) Cnd* =0 nd*=(p), (3) either for every
neighborhood N, of p, ¢;n C,n (N,— (p)) =20 or for every N, there exist
sub ares b, &' of (), (' respectively and a third arc " such that b n b = (p),,
b"cN,n A and bu b’ ub” form the boundary of a simply connected JORDAN
region in 4. Thus the set of ares in 4 ending at accessible points of 4* can be
divided into equivalence. classes, {77 }.- Bach equivalence class 7 is defined
to be an end of A with end point p. If uy, 7, 1s, 7, are different ends of 4,
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let by, bs, by, by be arcs defining these ends and assume that the ares are. dis-
tinet except perhaps at their end points on A*. Then if there exists an arc C
such that b, u € U b, form a cross cut which divides 4 into two parts, one con-
taining b, and the other b, then we say that the ends 7, and 7, separate 7,
and 7, . If one end is designated as 7., then an open interval (n, n.) is the set
of all ends 5 such that #,, 7, separate n from 7, . A prime end w of A is defined
by a nested sequence {(77,,, 77,,) 1 of intervals in {77} which has at most one
end in common. Thus each end deﬁnes a prime end but some prime ends have
no corresponding ends. Equivalent sequences of ends can be defined in the
obvious manner and a prime end can be defined as a class of equivalent se-
quences of this type. Evidently to each prime end w corresponds a connected
set of boundary points F, c A* Frequently only connected subsets of A%
will be considered in which case the ordering on {77 }A is equivalent to that
of a real interval. ,

A homeomorphic image of the interval 0 <¢<<1 or 0 <t<C1 is called
_an indefinite arc. For simply connected plane domain 4, CESART has shown [2 c]
that if w is a prime end of A there exists an indefinite arc b lying entirely in 4
which has a portion of the boundary set corresponding to o as a limiting set.
He has also shown that the boundary of 4 can always be approximated in a
certain sense by an arc, a simple closed curve or an indefinite arc. We shall
establish similar results in the following for open subsets of two-manifolds.

~ 3. - Ends and prime ends of open subsets of M.

Let Q c M be a connected open subset of M and denote the boundary
components of @ by {y'},. Ify'e{y'}, let y be the set y’ —@, i.e. y is the
set of pomts of 'y not on the boundary of 3. If M is a manifold without boun-
dary, y' =y. Let 4(Q, y) be ‘the component of M —y which contains @,
(4 (Q, y) may equal M —y). Then the set A (@, y) has y as a portion of its
boundary. We shall be concerned with developing a theory of prime ends for A
with respect to y.

Let p € y be accessible from A. Let N, be a co-ordinate neighborhood of p.
Then as in section 2, ends of A ending at p can be defined in N, n 4. It is evi-
dent that in the original definition of an end, a neighborhood of p would suffice
for the definition. Prime ends of 4 n N, ending on y can also be defined bus,
in general, a prime end will not be defined locally. Thus to every point pe' 4
accessible from 4, ends can be defined.

Definition 3.1. An end ne{n}A ,w1th end point pEy is said to be
qdmissible if there exists an arc C in the eqmvalence class of arcs defining #
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such that for any neighborhood U, of p, U, n Cn Q 0. A prime end is ad-
missible if it is determined by admissible ends.

-Let y be covered by a set of co-ordinate neighborhoods in M. Let N be
one of these neighborhoods. Then (¥ —+)n A will consist of components
{K } (possibly infinitely many) each having points of ¥ on its boundary.

Lemma 3.1, If K is a component of (¥ —y) n 4 then K is an open
simply connected planar set or a planar open set of genus one.

Prootf:

Evidently K is open. If yc N then either AcN and 4 =K is simply con-
nected or the complement of 4 is in N and the boundary of K consists of y
and N* and hence K has genus one. Ify ¢ N then K* consists of portions of y
and portions of N* K cannot have more than one boundary component since
if it had more than one, one component of K* would separate the others from
the exterior of N and this would imply either that y C K or N* is disconnected,

both statements yielding contradictions. -

The case in whick K has genus one implies y ¢ ¥ and the prime end theory
in this case reduces to the planar case which is already hnown. Thus in the
following sections we consider only the significant case in which y ¢ N and
hence every K is simply connected and can be considered as 2 simply connec-
ted subset of E,.

Assume now that y has been chosen and that ¥ does not lie completely in
any co-ordinate neighborhood. For each ‘point p e y let N, be a co-ordinate
neighborhood which contains p. Since y is a closed subset of M, v is compact
and there exists a finite family {Nk} (k =1, 2,..., n) chosen from the fa-
mily {N,,} which covers y. Let ! be a component of N ny. Let K* be a
component of (N'—y) n 4 which has y! as part of its boundary. By Lemma
3.1 we can assume that K! is simply connected. Since this is true, ends for
K! can be defined in the ordinary way and assigned a cyclic ordering with
end points on K*. In particular, this ordering defines an ordering of the ends
ending on y*. It is also possible that prime ends of K may exist here and be
defined in the usual way. Thus the ends and prime ends of K* ending on y!
have a defined ordering. It can be assumed that y*£ y since otherwise the
investigation of the prime ends would reduce to the planar case. Thus there
exists another neighborhood of the family { N*} which we shall take to be N®
such that y*n N2 50 and K'n N2 0. Let K*c N* be a component of
(N*—y)n 4 wich intersects K* in a set which has the last component if it
exists (in the ordering of ends of K* ending on y*) of y1 n N2 as a portion of its
boundary and which contains ares in K* which define ends of K ending on yL
Now let the ends and prime ends of K2 be cyclically ordered in a way which
will be consistent with the order already defined in K! n K2 for ends ending
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on y'. Let v be the component of y n N2 which coincides with the last compo-
nent of y*n N2 in K n N2 Thus the ordering of ends of K* ending on K**
induces an ordering on the ends and prime ends of K* ending on y2 Thus a
consistent ordering of ends and prime ends of K*'u K* ending on y' u y* has
been defined. The same process can be continued to successive components
K3, K%, ... of the various (N*—y) n 4 and a sequence (possible finite) of com-
ponents of the (N*— y) n A can be found and an order on the ends and prime
ends of U K’ which end in y can be constructed. The same process can be con-
a1

tinued in the other direction from I*.

Now let © be any finite covering of y by coordinate neighborhoods where
the original neighborhood N is in ®% in each case. Thus to each such covering,
an order on the ends and prime ends can be defined yielding an ordered set g
Turthermore, if the same order sense is always used in &}, then if 9%, 9l are
two such coverings 6,,C o) airs T €Oy scVith order preserved. Let o = Uoy,
__where the union is taken over all such finite coverings.

Definition 3.2. A maximal set of ends and prime ends of the type ¢
above will be called a segment of ends and prime ends of 4 ending on y.

It will be seen that every end or prime end of v as defined above lies on
a unique segment. Thus the set {7}, can be decomposed into segments.
It is evident that the ordering on each segment is the same as that for a real
interval. It will be noted that different portions of the boundary of any of the
sets K may have their ends and prime ends ordered differently, i.e. the ordering
as different segments bordering K may not coincide with a cyclic ordering for
all ends of K ending on K*. If M is orientable, the orderings may be chosen
to be compatible with a cyclic ordering of all ends of K but this fact is immate-
rial in the following sections.

Theorem 3.1. Let o be a segment of ends and prime ends of A ending
on y. Then for any &> 0 there exists an arc C C A (possible indefinite) such that
if Nuy Moy M << 1 are elements of o with defining ares by, b, respectively then C,
has a sub arc beginning on b, and ending on b, such that every accessible point of
corresponding to an end between n, and 1, is within e distance of C,. Furthermore,
there exists a one to one order preserving correspondence between points of C, and
elements of {n},, between n, and 7, .

Proof:

Let 9% :{ Nk} (k =1, 2, ..., n) be a finite set of co-ordinate neighbor-
hoods, each of diameter less than ¢ which cover y and let #,, 7, be elements
of 05 . For N* and the corresponding y*, let #, be the end with b, as a defining
are, b, c K u (p) and let 77; be an end of K! and K*? anding on y*n N'n N®
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with defining arc b’ ¢ K1 n & and also assume that b, and b’ have no points in
common except possibly a point of y1. Then every end between 1, and 77; can
be characterized by an arc lying in K'. Let ¢, be an arc in K* which joins points
of b, and b'. Then every end between 7, and #, can be defined by an arc in K
strating on €, and such that no two of these defining ares for the ends intersect
except possibly at points of y* [2 b]. The same process can be continued for
the entire segment by defining arcs (,, C,, ... which continue from each other
in such a way that the initial point of €, is the end point of ¢,_, and such that
no two of the arcs intersect except at end points. The are ¢, can be continued
also in the opposite direction by ares C,, C¢_;, C,, ... in such a way that the

=<4
entire set U C; is an indefinite arc C, lying within ¢ distance of the portion y*
P

of the boundary which consists of end points of ends and prime ends in the
segment ¢. The correspondence of any end » with the point where its defining
arc intersects ¢ gives a one to one order preserving correspondence between
C, and o. V :
In case O, is an arc or snnple elosed curve we S‘Ly tlmt ois a uomplete sngment

4. - Properties of boundarj' components of open subsets of /.

This section will be devoted to proving a lemma about the number of com-
ponents of the boundary of a connected open subset of M which will be useful
in the following sections.

Lemma 4.1. Let U be any co-ordinate neighborhood on M which
intersects, at most, one boundary component of M. Let Q be a connected non-
void open subset of M and let ¥ be any component of U — @* which contains no
points of ¢. Then V* contains points of only finitely many components of Q*,

Proof:

Let y be a component of @*. Assume first that y n V* 520 and that y
is deformable to a point on M. Since y n V* 5= 0, M — y must consist of two
components of which one is a.planar open set. In case this set contains points
of @ it contains all of ¢ since y separates M in this case. Then if V* contains
portions of y it contains points of no other components of Q* since y separates
all such components from V.

If v is deformable to a point on M and the planar component of M —y
lies in the complement of @ then y disconnects this component from all other
components of §* Thus if V*ny 20, V* intersects no other components
of @*. Hence, in case y is deformable to a point on M, if V*ny £ 0, V* can
contain points of no other component of Q*. :
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We shall assume now that V¥ contains points of a boundary component
of @ which is not deformable to a point on M. Then every component y.€ ¢*
such that y n V* 5= 0 is not deformable to a point in M.

TLet M be represented as a closed disk D in the plane with certain of its
boundary arcs identified in pairs. This can be done in such a way that U is
either interior to the disk or intersects one of the boundary ares which is not
identified with any other. TFigures 1 and 2 show how this can be done in a

Figure 2.

particular case. Let S ={ s, 8uy S35 vy s, + be the finite family of distingui-
shed boundary arcs of the disk D some of which are pair wise identified. Those
which correspond to the boundary components of M are not identified with
any others.

Let y, be a connected portion of @* n D which intersects D* in two distinct
ares §;, §; €2 8. Then y, divides D into two parts D,, D,. Let D; be the part
contmmno V. Then if y, is any other component of §* n D which intersects V',
y» can behave in several ways. If y, intersects the same two ares as yy, then V
lies in the subset of D bounded by yi, 7., 8:, §;, and no other component of
Q* n D which intersects 7* can intersect two different arcs in . If y. inter-
sects D* in points of arcs s, , s; where at least one of the ares s, , s; 18 distinect
from s, , s,, then the bounda;ry of the component of D — (y, U y,) which con-
tains V conmsts of four pieces vy, s, ¢1, @», Where a;, a, are disjoint arcs on D,
Since both y;, y, intersect V*, if y, is any other component of §* n D which
intersects V*, y, cannot join @, and a, since then it would divide V into two
disjoint pieces contrary to the connectedness of V. Thus y, must join two ele-
ments of S which lie on a, -or two elements of & which lie on a, or y; can in-
tersect.only one element of S, either on a, or on a,. If y; joins two elements
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of & on @, and if y, is a fourth component of Q*n D then y, will have fewer
elements of & available to intersect than y,. If this process is continued, choos-
ing successively components y;, ¥, ..., each of which join two elements of S,
then each will have fewer elements available to join than the preceding one.
Since & contains only a finite number of elements, there can be only a finite
number of components of @* n D which intersect V* and which join distinet
elements of 8.

The only components of @* n D which intersect V* and remain to be con-
sidered are those which intersect only one element of S. Let y, be such a com-
ponent and assume that u, intersects only s; e S. Let y be the component
of Q* which contains ttp. Then y must also intersect the other element 85,
of & which is identified with s, - Let @, be the portion of ¢ bounded by u,
and s; and let ¢, be the component of § n D which contains the portion of s,
corresponding to Q; n s, - Consider the components of y n Q;. All these com-
ponents may intersect only s, and, if so, y encloses a planar region on x and

this case has already been considered. Hence, y n @, must have components

which intersect other arcs of & than s, . Let us assume first that only one
other arc s, of & is intersected by components of y n ;. Then if @, is defined
with respect to s, in the same manner as @, was defined with respect to S5
the same argument can be repeated for @,. Let us assume that successively
Q15 @3, @3y ... have been defined, the closure of each intersecting only an «ini-
tial » and a « terminal » element of S as above. We shall show that this situa-
tion can occur only a finite number of times for any y.

Let p, be a point of §; n U and let p, be a point of U n @ which is separated
from V by some other component of @*. Then since @ is an open connected
subset of M it is arc wise connected and there exists an arc C joining p, and p,
lying in . Since C and y are closed there is a minimum distance ¢ between
them. Now each arc in the sequence 85,1 85,0 S35 ... defined above must inter-
sect both € and y and the intersections must be at a distance apart of at least .
Since the boundary curve D* of D is finite in length, this implies that there
can only be a finite number of such intersections. However, no —Qk for k>1
can intersect only one arc of & since in this case y will de deformable to a
point. If they all intersect two such arcs for k>1 then eventually $;, =8,
for some m <<n and this implies that u, n u, # 0 contrary to assumption.
Thus some @, must intersect at least three of the arcs in S.

Now let »' be another component of @* which behaves in the same way
as y. Then again Q,, Q,, ..., @, can be constructed where {, intersects at least
three of the arcs of 8. However, by an argument similar to that of the first
part of the proof, it can be seen that the number of arcs of S available for these
intersections is less than the number available for the intersections of y, since
these three arcs must be in the complement of D* n Q, and each component
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of the complement will have fewer arcs to intersect than were available to Q.
Tf successively other components of @* which intersect V* and have the pro-
perty that the component of @ n D which intersects ¥* and has its boundary
points on the component in question intersects only one element of S, then
eventually one of the sets of the form @, must have boundary points on at
least three elements of S. However, since there are finitely many elements
of 8, there can be only finitely many such components.

Since we have exhausted all possible types of components of R* which
intersect V* it can be seen that V* contains points of only finitely many com-
ponents of Q*.

Figures 1 and 2 show a particular case in which for a manifold of genus two,
three components of @* intersect V*. It seems probable that at least for an
oriented manifold without boundary and with genus n, that the maximum
number of components of @* which intersect V* should be » + 1.

5. - The distribution of admissible ends.

Admissible and inadmissible ends and prime ends were defined in section 3.
We prove here that any segment consists entirely either of admissible or of
inadmissible ends and prime ends.

Lemma 5.1. Let y be a boundary component of Q, let N, be a co-
ordinate neighborhood of a point p € y, let K be a component of 4 n (N,—7y)
which has p as an accessible boundary point and suppose K contains a sequence
of points {pl, Das Pay e }c Q such that lim p, =p. Then any end defined
by an arc from K to p is admissible. e

Proof:

Assume that there exists in K an arc b with end point p which contains
no points of § except p. Let { gi, g2y sy --- yC b be a sequence of points con-
verging to p. By Theorem 3.1 it is possible to construct a sequence of arcs
{ C i} in K joining each p, to each ¢, and such that all points of C, are within
¢, of the portions of y bounding K where lim ¢, = 0. However, each arc O

-0

contains a point p; which lies on a boundary component of ¢ since ¢ is con-
nected, p,€ @, ¢, ¢ @. Thus lim p',. = p. However, by Lemma 4.1, only a fi-

>

nite number of boundary components of @ can intersect K in this manner
since b— (p) lies in a component of K — Q* which contains no points of Q.
Thus an infinite sequence of { p, } of the { p, } must belong to the same boun-
dary component y’ ¢ @*. However, ' is closed and hence ' =y since they
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contain the common point p. However, this implies that each 'p:.k is not in K
contrary to the construction. Hence the arc b must contain a sequence of
points of @ converging to p and b defines an admissible end.

If there exists no arc b c K such that b defines the end 5 and (b — (p)) n @ =0
b n Q* contains an infinite sequence {gi} of points converging to p such that
in the ordering of points on b, ¢, << ¢, < gs<C...<<p, none of these points
can be points of y. It is possible then to construct around each point ¢, a sphere
s, of radius less than 1/¢ which does not intersect y or any of the other points
of the sequence and lies in K. Each sphere s, contains a point p, e @ n K.
For each i let ¢, be a point of bns, with ¢, > ¢,. Then g, can be joined to
p, by an arc b, in s, and p, can be joined to q, by a similar such arc b'i in such
a way that b, n b; =p,. Let this be done for each 7. Then if the portions of
the arc b between ¢, and ¢, are removed the union of the portions of b which
remain plus the union of all the b, and b; forms an arc in K which is equiva-
lent to b and which defines an admissible end. Thus & itself defines an admis-
sible-end.

Lemma 5.2. Let ¢ be a segment and let #,, 7, € 0, n << be inadmis-
sible ends of 6. Then every end # in the interval n, <7 < #, is inadmissible.

Proof: -

Assume that there exist ends in the interval which are admissible. Then
there exists a set & of the type used to define the segment for which there are
defined both admissible and inadmissible ends. Tet %' be admissible and de-
termined by an arc b’ ¢ K and let 7" be inadmissible and determined by an arc
b" c K. Then all of 5" except its end point on y lies in a component of K — @*
which contains no points of . By a construction similar to that in the proof
of the last lemma, arcs { C,} can be constructed in K approaching y and
having initial points in @ and terminal points not in Q. Thus there exist a
sequence of boundary points { p;k} as in the last lemma, all belonging to the
same component of @* approaching a point of y. Thus not all ¢, are entirely
in K contrary to assumption. Thus no K can contain both admissible and inad-
missible ends. ‘ '

Theorem 5.1. Bvery segment o consists entirely of admissible ends
and prime ends or entirely of inadmissible ends and prime ends.

Proof:

By the proof of the above lemma, every set K used in defining ¢ must
consist entirely of admissible ends and prime ends or entirely of inadmissible
ones. Since the sets K overlap in the definition of ¢, o must consist entirely
of admissible ends or entirely of inadmissible ends.
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6. - Prime ends of the second kind.

In section 3, segments were defined and the prime ends which arose locally
in defining the segments will be called prime ends of the first kind. In case all
the O of the type discussed in Theorem 3.1 were arcs or simply closed curves,
the segment ¢ was called complete. If, however, C, is an indefinite arc, then
consider the portions of C, from some point g€ C’a in the increasing direction.
If the set C, , is an indefinitite arc in the sense that it is an order preserving
topological image of 0 <t <1 then C,, ¢ will be said to define a prime end of
second kind. In the ordering this prime end w will be defined to follow all ele-
ments of o. A similar definition is used to define a prime end of second kind
which is less than all elements of ¢. If two segments o, ¢’ are given and if C, ,
G, . are defined as above, then C, ., C, , will be said to define the same prime
—end-of second kind if given any ¢, there exists a co-ordinate neighborhood N
of diameter less than e such that €, , C have points in the same compo-
nent K of An (N —7y). If the ordering on ¢ is given, then if €, defines a
prime end which follows all the elements of o, then, if necessary, let this orde-
ring on ¢’ be changed to that C,: ,+» defines a prime end wich precedes all the
elements of ¢'. Treat the case in which C_  defines a prime end preceding o
in the same manner. If this process is carried out successively, a number of
segments ¢ can be joined together in a linearly ordered manner. A maximal
linearly ordeal set of ends and prime ends formed in this manner will be called
a complete segment of ends and prime ends of 4 ending on y. It will be noted
that complete segments may contain prime ends of both first and second kind.

H’,(I"

Lemma 6.1. Let the arc C,, define a prime end of second kind. Let C,,
be divided into sub ares l, I, ls ... by points ¢ = ¢; << ¢ << s <<.... Then
the arcs 1, Iy, ly, ... have a limiting continuum 4., Furthermore for any
subdivision of C,  into sub arcs in the above manner, the superior limiting set
A is the same. We define lim C,, ==

Proof: The proof is the same as that given in [2 e, p. 7] and will not be
repeated here.

Theorem 6.1, The union of the limiting sets of all ares defining the same
prime end w is a connected set .

Proof: ByLemma 6.1 each limiting set is a continuum. Let C, , C,, . be
two indefinite arcs defining the same prime end w of second kind. Then for any
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integer n there exsists a co-ordinate neighborhood N, of diameter less than 1/a
such that C, , € . can be joined in some component K of (¥ —y)n 4 by
an arc lying in K. This implies that C, ,, C,. ,, have a limit point in common
and hence that their two limiting sets have a non void intersection. Thus the
union of the limiting sets of C, ., C,, . is connected. Hence the union of all
such sets is connected.

Further information about the structure of the sets E, would be valuable.
In particular, information of the type discussed by URSELL and Youna [12]
in the case of a simply connected plane domain concerning the principal points
and the wings of B would appear useful. In connection with this the question
of whether or not every segment o was a subset of a unique complete segment
would be interesting. Another question of interest is the question of whether
or not every complete segment has all its ends either admissible or inadmis-
sible. The answer to these two questions seems likely to be affirmative. The
author intends to investigate these and other questions in later papers.

7. - Admissible ends in plane domains.

Let M be a simply connected JORDAN region in the plane and let Qc M
be an open connected subset with boundary components { y}Q . We shall
show that the set 4(@, y) defined in section 3 of this paper coincides with
the set 4'(Q, y) defined by CESARI in [2 a, p. 312] and that in this case, the
set of all ends from A(Q, v) ending on y is admissible. This will prove that the
prime end theory developed by OmsARI yields the same results as the present
theory in case M is a simply connected JORDAN region. It will be recalled that
under the definition of 4'(Q, y) given in [2 a], A4'(Q, y) =Q u U(y' u ")
where B’ = f'(y', y) consists of all elements of M which are separated from v
by »' in M and where U(y' U f) is taken over all y' € {y}, ¥ == y.

Evidently A'(Q, y) c 4(Q, v) since A’ is connected, opén, contains @ and
does not contain y. Assume that there exists a point pe 4, p ¢ A’. In this
case, y divides M into two components and, by definition, p lies in the com-
ponent which contains @. Since p ¢ A’, p ¢ @ and hence p is separated from @
by a boundary component y’' of Q. However, since p € 4, ' # y. However,
in the case of a plane region, every boundary component is known to separate
the component of its complement not containing @ from all other boundary
components of @. Thus ¢’ separates p from y and pe 4’. Hence 4 = A'.

It must next be proved that all ends from 4 ending on y are admissible.
However, it will be noted that in this case M itself is a co-ordinate neighbor-
hood and 4 is a set of type K. If K is of genus one in this case, a cut can be
made by removing an arc joining a point of y and one of M* and thus we get



[13] PRIME ENDS FOR OPEN SUBSETS OF TWO DIMENSIONAL MANIFOLDS 97

a simply connected co-ordinate neighborhood. However, the same proof as
that used in Lemma 5.1 shows that the end # must be admissible. Since 5
was an arbitrary end, all ends of 4 ending on y are admissible. Thus in this
case the admissible ends of 4(Q, ») correspond to all the ends of 4'(Q, y) =
= 4(@, y). Hence also all prime ends are admissible.

To show that there exist situations for more general manifolds M for which
not all ends from 4(Q, y) are admissible, consider the case in which M is &
torus and @ is a band which goes around the torus with two boundary compo-
nents y, y'. It is easily seen that A(Q, ) consists of M —y and that not all
ends from A(Q, y) to y are admissible.
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