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R. F. Wrinnranms (¥

Lebesgue Area Zero,

Dimension and Fine-cyclic Elements. (**)

« If a surface has area zero, it is really a curve », is the propdsi’oion to be
discussed in this paper. With a suitably loose interpretation of «is really a
curve », the proposition is valid in a very general setting (Therorem 1). A more
satisfying interpretation leads to an affirmative solution in a special case
(Theorem 2). This is a generalization of a theorem of RAp6 [10]. LEBESGUE
‘m-dimensional « area » and extensions of it are used.

An m-dimensional area is a function whose domain is a certain class of
maps f: X — F,, m<n. The largest such class considered here consists of
arbitrary maps (continuous transformations) from compact, m-dimensional
HAusDORFF spaces, X. This generality seems justified by our corollary that
LEBESGUE area zero is a topological property.

1. - Definitions.

If L is a complex of dimension < m and ¢: L — B, is simplicial, relative
to a subdivision of , (for these and other terms concerning simplicial complexes,
see [4], [8]), the elementary area of g is defined by

ew (9) = 2 tm (9 (0))

where s, is LEBESGUE m-dimensional measure and the summation is taken
over all m-simplexes ¢ of L.

(*) Address: Mathematies Department, University of Chicago, Chicago 37, Illinois,
U.8.A. . )

(**) Supported in part by ARDC under contract AF 18(600)-1484 at Purdue Uni-
versity. - Received December 12, 1958.
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LEBESGUE area of a map f.: X — FE, is defined by means of e-iriangles:

](‘
X = |K|

N

|Z]

where K and L are complexes of dimension <m, | K|c E,, h: L — K is sim-
plicial, and o(f, hy) << &. Specifically,

L.(f) = least number %

such that for every & >0, there is an e-triangle, where

1) g is a homeomorphism; and

2) en(h)<Ek-+e ().
Condition 2) requires triangulability of the space X. If this restriction is re-
laxed, one has the alternative functionals,

I? (f) = least number k

such that for every & >0 and every open cover ©f of X, there is an s-triangle,
where ‘

1p) g is a @f-map; and

2p) en(M)<k + &.

And
LE(f) = least number k

such that for every >0 and every open cover 9f of X, there is an e-triangle,
where

1%) g is a Qf-map; and
2%y e¥(g, L, B) <k + £

where ¢ is defined in terms of ¢ and L as well as the map h.

(*) More customarily, L,(f) = liminf e,(g) .
g—>7
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In [12], I?, and a type of L} are discussed (%), where ¢’ is defined in ferms
of the map % and arbitrarily fine «d-triangles » of the form

g
X ||

N
1|

Though the inequality L* < L, follows easily from the definitions and holds
whenever X is triangulable, the contrary inequality is in general false [11]; that
? < L* is easily proved though it is not known whether this inequality can
be reversed. However, if any one of these funetionals is zero, then they all
are. This is contained in Theorem 1, below.

2. - Statement of results.
Theorem 1. Suppose X is a compact Hawusdorff space of dimension
<m and . X - E,. Then the following are equivalent:
a. L5 (f) =0;
b Ly (f) = 0;

c.  for every & >0, there ewists a map /. X — B, such that off, ') <<e
and f'(X) is a polyhedron of dimension <m—1;

d.  for every & >0, there exists a map ' : X — B, with o(f, ') <& such
that {' can be factored through a space of dimension < m-—1;

e. for every £ >0 and cvery open cover €L of X there is an e-triangle

f
x - 1]

\Z]

such that (1) g is a Q-map, and (2) e¥(g, L, h) = en(h) = 0.

(*) The definitions given here differ slightly from those in [11]. See the appendix.



134 R. F. WILLIAMS

4] .

If in addition X s triangulable, we may add:

f. L, {f) =0; and

g.  for every & >0 there is an e-triangle
f
X K|
A
g A
N
]

such that (1) g is a homeomorplhism, and (2) e, (k) =0

Corollary 1.1. The ¢ in part (2) of the definition of L., L, and L*
may be deleted.

Corollary 1+2.~SupposeX-and—Y-are-compact—H awsdorffspaces
of dimension < m, thai the diagram

Y i ~ K,
hy ¢[ hs 14‘
. ’
X f(X)ckE,

is commutative, and that LE(f) =0. Then L¥(g) =0 and in particular,
Lebesgue area zero is a topological property.

For reference we state a special hypothesis:

(#) X is compact, metrie, locally connected, and of finite degree of multi-
coherence.

Inasmuch as every 1-dimensional unicoherent space satisfying (4:)is a den-

drite and as (4) is preserved by monotone maps, the following is a generali-
zation of theorem 2.13 of Rano [10].

Theorem 2

i

If X is of dimension < 2, satisfies (4), and

f
X

Y

; Eﬁ

g

M
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where g and h are the monotone, light, factors of f, then the following are equi-
valent: ‘

1. L) =0;

2. dim M<1;

3. M has no fine-cyclic element (see § 4, below).

In justification of the special hypothesis (4), we give an
Example. There exists a 2-dimensional, locally connected continuum X

in the plane and a map f: X — By with L;(f) = 0, such that if

f

X E,

—
7

M

is any factorization whaisoever of f, then dim M > 2 .

3. - A key lemma and proof of Theorem 1.

A version of the «pigeon hole principal » states: if &k is a positive integer
—1/2
an(Ho)

(=1, ..., k) then p.(Ni-, H) > 1/2) pu(H,). We will use this in the proof
of the

and Hy, ..., Hy, are measurable subsets of H, such that Un(H ;) >

Lemma. Suppose C, is the unit n-cell in E,, k :(n
. m

), M is a compact
subset of Cy, and that pn(m; M) << e, where my, ..., m are the orthogonal projections
of E, onto ils m-dimensional coordinates planes. Then there exists a polyhedron
K c B, of dimension < m and a retraction r . M — K such that no point of M is

moved more than d = 2012 (2ke)V/™ by r.

Proof.

If & > 1/(2k), then d = 2n¥2 and r can be chosen to map all of M into any
one point of C,. Now suppose &< 1/(2k) and let u be the positive integer such
that 1/{ 2k (w -+ 1) } < e< 1)(2ku). It follows that (2ke)™ < 1/u <2 (2ke)Y™.

Let @ be the collection of u» equilateral n-cells of edge length 1/w which
fills ¢,. For such a collection @, the notation Sk, C will be used to denote
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the union of all i-dimensional faces of cells of C. The technique (%) is to show
that there is a retraction #: M — Sk,—, © which moves no point out of any
n-cell of € which contains it. As the diameter of each n-cell of C is n¥2/u, »
will have the required properties.

Note that e<{1—(k—1/2)/k}/um  Let W = (0, ..., 0) be the origin,

., ¥ be the m-dimensional faces of ¢, which contain W, and let @€, =

={ ¢, }¥", be the collection of all m-cells in which the n-cells of € intersect
F, (i =1,..., k). Choose the notation so that ¢, is the m-cell of C, which con-
tains W, and let t,;: C;; — O, be the translation (3 =1, .., %; § =1, ..., u),
Let €, be the cell of C which contains W and « = (k—1/2)/k.

Computing,

Hom [U?:l tis (O 0oy M) <

< S o (Ciy 070 M) = pgfewy M) < (L —e)fum (3 =1, ..., K.

Let D;=C; — U;‘Zl ti(C n M), Then p.(D;) > un(Cy) — (1 — o) fum= otjum,
so that w.(C;nzn;*D;)>a«fur (i =1, .., k). Then by the pigeon hole
principal, ’

PNy CoN 77t D) >1/(2u7) .
As this in positive, there is a point, say x, in
NE, (@D n (Int C)).

Let @ =miw,), @y =1 (2a), and L;; =z (2y), so that ;€ Int Oy and
i€ (M), for i =1, ..., k; §=1,.., w

The remainder of the construction depends only upon the (% — m)-dimensio-
nal hyperplanes, L;;, the subdivision €, and the following properties of these
elements:

(a) LynM=0 (=1, ..,k =1, .., um);

(b) if CeC and j, is that integer such that w,(C) = Cu, (1 =1, .., k),
then M., Lﬁi is a single point w = w(C), which lies in the interior of C.

(a) follows from the facts @y, ¢ 7, (M) and L, = a; Y (z,;). To prove (b),
let p. be the integer > 0, such that C is the n-cell p,/u <o <(p, 4+ 1)/u and

(®) The autor is grateful to L. Cesarz for aid in simplifying this argument; see [1,
pp- 287, 288, 292] for a similar construction.
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note that w(C) is the point with coordinates p.fu -+ «f , where superscripts
denote coordinates, z =1, ..., n.

To complete the proof, let (a, b) be one of the pairs (i, /) (& =1, ..., k;
j=1,..,um). Suppose the coordinates were s0 chosen that =, (o, ..., 2") =
= (&Y .., & 0, ..., 0). Define 'r;b:Ca,, — gy — Skyu_y U to be the
radial retraction; then for each p € Cq, there is a scaler ¢ = i(p) > 0, such that
P (p) =g, where ¢ =p°tt(p—ak) (=1, ., m), and ¢ =p =0
(¢ =m +1, .., n). Define 1y Fo—&a — (Cop = SKpey Cup)y, DY #arlp) =
=70(p), if pE Capy Twr(p) = p, Otherwise.

Let 7%, be the zth coordinate function of re (2 = 1, .. m), and define
70 Cy— Ly = Co— 7" (Cap— Sky Ci) by 7'(2) = (Pl (@Y weny T (@™), 27,

., @) . This is possible as L, = 7] (). Note that +' moves no point out
of any n-cell of C which contains it. Furthermore, '

(@) ()N Ly =0 (=1, oy b3 f=1, 0y w).

For suppose, on the contrary, that pe-M and that ri(p) e Lyy for-some-

o, B; note that pen;* (Cw). Let ¢ be a cell of @ which contains both p and
'(p) and let w = w(C). Then we Ly n L,; so that w* = wh forz=1,..,m.
The hyperplane L, , satisfies n— m equations @ = w7, for ze Z, c{1, .., m}.
Let %, = Z, U Z,, where the elements of Z, ave < m and those of Z,, >m. Let
q =1'(p); then by definition of +, togother with the assumption that ge L g4,
we have, for all z€ Z,, ¢ =w* = p* + t-(p" — ), where t = i{m(p)) > 0,
so that p» = w=. Ifz€ Z,, then ¢* = p*=w*. Hencepe L, which contradicts (a).

By induction on (i, j) we obtain a retraction 7 : Co— U, ; Ly = 0y such
that for any pair (4, ), : [» (M)] n €y CSkyy O, . Bub this is equivalent to
the condition, #(M) C 8k,—, C, and the proof is complete.

Proof of Theorem 1. (a) implies (b) as I2 (f) < Ly (f) is always
true. Next, assume (b), let ¢ >0, and let U be an n-cell containing f (X). As
this proposition is unchanged if the metric for E, is multiplied by a positive
constant, we will suppose that C has edge length 1. "By definition of L], there
is an (g/2)-triangle

f
X > |K'|c E,
/!

|Z|

where ¢, (h) < (¢/(4n*%)m/(2k) . Using the Lemma, we obtain 2 retraction
7 hg (X) — K', apolyhedron of dimension m — 1, lying in K, . Then »h g(X) c K,
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and a slight modification yields a map f, so that f/(W)c K’ is itself a poly-
hedron. B

(¢) clearly implies (d), with the second factor the identity. Now suppose
e>0 and 9 is an open cover of X. Assuming (d), we have

f
X 'En
X /
N ¥ .
M

where ¢ (f, hg) < /2 and dimM < m — 1. For each ¢ > 0, we have, by the sim-
plicial approximation theorem, the diagram

g e 7
X ‘ M - ’

i h g,l’ /lz’/
X, | s | 1| ~

in which § is an (m — 1)-dimensional open cover of , « is an m-dimensional
open cover of X, o star refines O, X and M 5 are the nerves of o« and f3, ¢, and ¢’
arve canonical, k,, ' are simplicial, and « §-commutativity » holds in the rect-
angle and triangle.

That ¢, & Qﬂ-mapz follows (as in the appendix) from the fact that « star
refines @f. Clearly e, (3" Iy) = 0, as each simplex in X goes into a simplex
of dimension <m—1 under %'h,. Similarly, % (g9, X, »' h)=0. For
sufficiently small 6,

= By

f
X B,

-
7

A Ay
X, |

is an e-triangle, which proves (e). (e) is a strengthened version of the definition
of (a). o

Suppose now that X is triangulable. As before, (g) implies (f) and (f) im-
plies (a). Finally, (d) implies (g) in the same way that it implies (e) ..
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Proof of Corollary 1.1. The zero area case is the substance of
parts (e) and (g) of Theorem 1. To prove the positive area case, infroduce a
contracting map, #' : E, — E, defined by k(e ..., e") = (ret, ..., rer), with 7
less than but sufficiently close to 1 to obtain the e-triangle

f
X B,

7

/h'

Proof of Corollary 1.2. Let &¢>0. For each &, 6 >0, there is,
by (1¢), a dé-triangle

E,

N

| K5 |

where K, is an (m— 1)-dimensional complex in &, and 1 is the identity. For
sufficiently small 6, there is, for each vertex v of K, a point p(v) € f(X) within
¢ of v. Let j:K,— I, be the semi-linear map determined by v — &, p(v) .
Then for sufficiently small ¢,

g

Y > I,
7

g'hy )
N

[ K s

is commutative within e, so that, by (1 d), LE(g)y =0.

m

4. - Cesari’s fine-cyclic elements and a result of C. J. Neugebauer.

Fine-cyclic elements were introduced by Cmsarr in [2]. We will use the
formulation of NEUGEBAUER [7] and restate in this section a result of this author.

(NEUGEBAUER) A space X satisfying (i) is of dimension >2 if and only
if it has -a fine-cyclic clement.
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For a fine-cyclic element I' of X also satisfies () and is separated by no
finite set, [7]. It follows that no 0-dimensional set separates I” and in particu-
lar, dim I'> 2. The other way follows from [8; 8], because if X has no fine-
cyclic element, X is the union of a finite number of dendrites and hence of di-
mension <1.

5. - Proof of Theorem 2 and the Example.

Theorem 2. As monotone maps preserve (), the result of the pre-
vious section shows that (2) and (3) are equivalent. That (2) implies (1), (often
noted by previous authors) follows from part (d) of Theorem 1.

To complete the proof, assume that both L* (f) =0 and dimM >1. As
light closed maps cannot lower dimension, M is of finite dimension and the-

M1ef01e contains a 2-dimensional CANTOR-manifold [5; pp. 91, 94]. Hence there
exist two points b;, b, M with h(b;) # I({b,) such that no finite subset of I
separates b, and b, in M . Choose a; g~'(b;) and let ¢, = h(b,), for i =1, 2,
and let d = o(e,, ¢,).

By part (c) of Theorem 1, there exists a sequence f,, fo, ..., of maps of X
into E,, such that for each positive integer 4, o(f;, f) < d/(4i) and f(X) is a
polyhedron of dimension <1. For each 4, g [f{ay), f:(a,)] < d/2, and so there
exists a finite set K, C f; (X) such that K, separates f, (a,) and f, (a,) in f; (X)
and o (K, f:(a;)) < d/4 (j =1, 2). Let L; =f " (K,); then L, separates a,
and a, in X. As X is of finite degree of multicoherence, say of degree g, there
exist finitely many components L, ..., L"’:- of L; whose union separates
a, and a,, where ¢,<\q, (i =1, 2, ...). Hence there is a subsequence
{4,}2_, of the index i, such that (a ) all the ¢;,’s are the same, say ¢, =r, and
(b) each of the sequence { L,,} =, ..., { L, } 2, converges, say to sets
L('), ..y L., which must be continua.

As o [f (@), Ij] > a4+ (i =1,2;§=0,..,r), and as U], L, ; separates
a, from @, (x =1, 2,...), it follows by arc-wise connectivity that Ule I,
separates ¢, and a,. Furthermore, f(L)) is a single point, as f(L,;) is a single
point of the finite set K, (1 =1, 2, ...; §j =0, ..., #).

Inasmuch as each of the continua I, has a single point as image under f,
each has a single point as image under the monotone factor, g, say g(L;.) = e
(j =0, ..., 7). As the finite set B={ ¢, ..., ¢, } cannot separate b, and b, in M,
there emsts an arc f§ from b, to b, lying in M — E. Then g-1(5) is a continuum
containing @, and a, and lyingin g-{(M — B)c X — U :, contradicting the
fact that U]_, L, separates @, and a, in X. This completes the proof,
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Example. Let A denote a circular disc in the plane and let Jy, Js, ...
denote a countable collection of mutually exclusive circles in A with mutually

exclusive interiors, I, I, ..., such that U2, I, is dense in 4. Let J, denote
the circle concentric with J, and half its radius, and I, the interior of J,, for
i=1,2,... Let X=4 — U7, I,. Then X is a locally connected 2-dimensio-

nal Caxrtor-manifold.

Define an upper semi-continuous collection ¢ filling up X as follows: for
each positive integer 4, each circle concentric with J; and lying in J, U I;— I,
is an element of G. The remaining elements of G consist of those single points
of X — Uy J; U I;. It follows from the MoorE Theorem [6], that the decom-
position space, Y, is a dis> D plus a countable collection o, o, ... of mutually
exclusive ares, each intersecting D in only one end-point. For each 1,
«; is the decomposition of J, u I, — I,. Let f be the decomposition map; then
f is monotone. ¥ will be thought of as embedded in E,, D as a solid square
in the sy-plane, and the arcs o, o, ... as being vertical line intervals, lying,
~except for their end-points; A;; Ay w-above Dem

We use the characterization given in part (d) of Theorem 1 to show that
Ly(fy =0. Let ¢>0 and n be a positive integer such that the diameter of
a;< ¢, for all i>n. Let » be the retraction of ¥ onto ¥ —UZ, (o, — A4y)
defined as follows: 7 (y) = A4,, if y€ o, ©>n, and 7(y) =y, otherwise. Let
f' =rf; then off, f)<e.

Let & be the monotone decomposition of X defined as follows: for each
i > n, that portion of each radii of J, which lies inJ,; u I; — 1, is an element
of G'; for i < m, each circle concentric with J; and lying indJ;u I,—1I,is an ele-
ment of G'; and each individual point of X — U7, (J:u I,) is an elemen$ of G'.
Then ' is an upper semicontinuous collection of continua filling up X and
each element of @' maps into a single point under §'

Let M be the decomposition space of G' and let ¢g:X — M be the
decomposition map. Then g:X — M, f g=*: M —{(X) is a factorization
of §'. Furthermore, M is the sum of a well known (« Swigs cheeze example »)
compact, 1-dimensional space and a finite number of arcs, those corresponding
t0 01y, Coy +ery Ony - Hence M is 1- dimensional so that L, (f) =0.

To complete the proof, suppose that g X — M, h:M —f(X)is an arbit-
rary factorization of f. Let g, X — By, g, M, — M be the monotone, light
factors of g, and consider two cases:

Case 1. For some integer 4, g,(J;) is non-degenerate. Then there is a
cirele K in I,— I;, concentric with and interior to J;, such that ¢ (K') is non-
degenerate for all circles K’ which lie between J;and K. Let L denote the an-

nulus ring consmtmg of J;, K, and all points of X between J; and K. For each
point z € g,(L), g;'(2) is a sub-continuum of some circle concentric with J;,
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because the images, under f, of each two such circles are mutually exclusive.
By the MoorE 'I‘heorem, ¢:(L) is again an annulus ring, and hence dimM > 2.
Therefore dim 3/ > 2, as light, closed maps cannot lower dimension.

Case 2. For each integer 4, g,(J;) is a single point. But then, by the
Moore Theorem, g,(X — U, I;) is a dise, so that, again, dimM > 2

6. - Appendix.
The definition of L2 given in [11] differs from that given in section 1 only
in that the condition
1p) g is a Qf-map
is replacel with
1p’) there exists an open cover « of X which refines 9 such that| L |=
=| X |, where X is the nerve of « and g is canonical relative to o.
Call a map g, @[’ canonical if and only if it satisfies 1 p’). To show that these

“two definitions of L are equivalent, it will suffice to prove:

Suppose X is a compact Hausdorff space, L is a complex, QL is an
open cover of X, and g: X —|L|. Then

a) if gis a QC-wmp, then g is O-canonical;

b)  there exists an open cover OV of X such that if g is V-canonical, then g
is a U-mayp.

Proof.

Suppose that ¢ is a l-map. As X is compact, there exists an open cover
A0 of X such that for each W e @0, ¢g-1(W) lies in some element of 9. There
is a subdivision L' of L, such that for each vertex v’ of L', St'(v') (the open star
about v’ in I'), lies in some element of 20, [4, p. 63]. Let o = g=1(St'(v)):
v' is a vertex of L'. Then o refines @ and X_ is isomorphic to L”, where L"
is the sub-complex of I consisting of simplex ¢ of L' such that | o | n g(X) 7 0,
together with all faces of such simplexes. Identifying these two, g: X —| X_| =
=|L"|c|L| is canonical, so that g is ©f-canonical.

Tho prove b), let © be an open cover of X which star refines ©f, suppose
o refines 0, and that ¢: X —| X | c| L] is canonical. Let Vi, ..., ¥, denote
the elements of o and let vy, ..., v, denote the corresponding vertices of X
Now suppose pe| X, (~:1-1 vir.,-n) denote the unique open simples of X
which contains p. Then ¥V, n..n ¥V, " 0, so that, as « star refines &, heze
exists an element U, € 9 such that I Lu¥ i C U, . Then, as g is canonical
relative to «, g~(p)c U,.

Analogu; arguments show that the definition of L
valent to that given in this paper. .

given in [11] is equi-

m
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