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Partial Area.

Parr II: Contours on Hypersurfaces. (*%)

-g.=This part-can be read independently-of Part I, towhich-it-is-a-sequel;
but uses its results. We also use the theory of the papers [1] and [2], which we
reformulate here in the relevant higher-dimensional case without proofs.

[#] is now Kuclidean n-space and [m] a hyperplane of dimension m < n;
the Cartesian coordinates in these will be fixed. Further [#]™ denotes the
normed space of the multivectors expressible as skew products of m vectors
in [#], and we term toroid the Cartesian product of a bhall R[n} of radins B
in [n] with the unit sphere I[n]™ in [#]*. The hyperplane in [n] determined by
a non-singular linear map x(w) from [m], whose constant Jacobian is J =0,
will be termed parallel to J; and in any such hyperplane, the termes: measure,
almost everywhere, and so on, refer to LEBESGUE m-dimensional measure.

We term m-integrable a function f(z, J), defined for each J el [#}™ and
for almost all z of any hyperplane parallel to J, which possesses, in each such
hyperplane [I, a LEBESGUE integral, and coincides with the derivative of
the latter by m-dimensional cubes, wherever this derivative exists in I7.
An m-integrable function- f(z, J) which is bounded on each toroid-is termed
m-integrand if its definition is extended to all J e[n]" by the homogeneity
relation f(x, tJ) =1 f(z, J) for t=0.

Any m-integrand can evidently be integrated on an m-dimensional simplex
in [»], and therefore, by addition, on an m-dimensional weighted o-polytope:
this last term designated here a countable sum of m-dimensional simplices

(*) Address: Department of Mathematics, University of Wisconsin, Madison, Wi-
sconsin, U.S.A.. _ _
(**) Cfr. Part I: Riv. Mat. Univ. Parma 10 (1959), 103-113.
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with positive real coefficients, such that the simplices lie in a same ball R[]
and that the corresponding sum of their (m-dimensional) areas multiplied by
these same coefficients converges (to a number that we term the area of the
weighted o-polytope). The prefix - is omitted when the countable sum reduces
to a finite sum; moreover the term weighted is omitted in the case of positive
integer coefficients. The integral of an m-integrand f over a weighted o-polytope
will be termed classical integral. We also define formally the classical integral
of f for any bounded Lipschitzian map x(w) from a subset W of [m] into a
bounded subset of [n] as the expression

ff[m(w), J(x)] dw,

where J(w) denotes, almost everywhere in W, the Jacobian of x(w). This
classical integral need not exist ¢ priort for an arbitrary m-integrand f(z, J),

for we do not know that fla(w), J(w)] is defined almost everywhere in W.
" However in ‘Spekci/aluca’ses we shall verify that it does exist.

An m-integrand f will be termed homologous to 0, and we write f ~ 0, if its
classical integral, over the elementary polytope consisting of the oriented ele-
mentary boundary of an arbitrary (m 4 1)-dimensional simplex in [#n],
vanishes. More generally, two m-integrands are homologous if their difference
is homologous to 0. In this section we shall be most concerned with m-integrands
which are homologous to continuous ones, or in particular, are themselves
continuous. The space of continuous m-integrands will be given the topology
of uniform convergence in each toroid and denoted by F™. By a generalized hyp-
ersurface we shall mean a non-negative linear functional L = L(f) defined
for feFm: we omit the term generalized if there exist a bounded Lipschitzian
map @(w) from a subset W of [m] into a bounded subset of [#], for which L(f)
is given by the classical integral defined abcve, for every fe Fm (1),

It is convenient to interpolate two remarks:

(8.1) If a generalized hypersurface is a countable sum of hypersurfaces, then
it is dtself a hypersurface.

(8.2) Iftwo Lipschitzian maps x(w), w € W c [m], define a same hyperswrface L,
then, for the two corresponding multiple systems m(W), the counting functions
agree outside (m-dimensional) area 0.

(1) If the classical integral is modified by multiplying the integrand by a non-nega-
tive measurable function g(w) we define similarly the notion of hypersurface with den-
sity. This notion includes in particular that of o-polytope.
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~ To verify (8.1) we observe first that, because of the topology selected for Fm,

the hypersurfaces can be defined by maps from subsets of [m] into a same ball
R[»], since their sum is a linear functional. We may clearly suppose each subset
bounded, and by translating them sufficiently far apart, we can combine the
relevant maps into a single bounded Lipschitzian map. To verify (8.2) we mer-
ely express L as an integral with respect to (m-dimensional) area in [n].

We observe further that it will be found that our notion of hypersurface dif-
fers much less than might be supposed jrom the classical notions of paramctric and
non-parametric curves and surfaces.

The classical integral over a simplex or (weighted) o-polytope similarly
defines a non-negative linear functional L(f) for fe I, and the latier will be
identified with the simplew, or o-polytope, itself. This interpretation of the no-
tions of simplex and polytope is more in keeping with their algebraic nature

“and gives a precise significance to operations which always seem somewhat forced
in a purely geometrical setting. The classical integral over a (weighted) o-poly-

_tope, is however defined also for certain m-integrands which need not be con-

tinuous, and we then write it

[t

L

whereas the notation L(f) is reserved for f € F». The same is true when L is &
hypersurface: however we must verify, of course, that when two maps define
a same hypersurface I, she two classical integrals agree for any m-integrand,
and this can be seen by comparing them with the Rimsz representation of L
as o STIELTIES integral on a toroid; this represeht-ation is determined by L(f)
for f € ' and agrees with the classical integral for any m-integrand for which
it exists.

The RIesz representation will also used when L is an arbitrary generalized
hypersurface, and by restricting in it the range of integration to a set ) which
we shall suppose Borelian, we define the intersection L, of L with the set Q.
In particular if @ is a half-space in which a vertical coordinate remains << 2
or < 2, L, is termed L truncated below, or above, the level z, and if these two
truncations agree, which they clearly must for all but countably many levels ,
L, is termed I truncated at the level z. We verify that

(8.3) (Lim L) truncated at (lim z,) coincides with the limit of (L, truncated
above, below, and if relevant at, z,) . '

Cowvergence of generalized hypersurfaces L, (» =1, 2, ...) is here defined,
in accordance with the so-called w*-topology, to mean convergence of the cor-
responding numbers L (f) for each f e Fm. On occasion we may also use a norm
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defined as the area of the generalized hypersurface L, i.e. the value of L(f)
for the funetion f =1 on the relevant toroid. ‘

We shall also use, for an arbitrary generalized hypersurface, another ex-
tension of the symbol L(f) to certain m-integrands, viz.

(L7 f) == lim (La 77.)7
A=
where f(z, J) ‘s the rean value of f(x -+ k&, J) in th. unit #-dimensional
cube of &, centered at the origin.

Infinitely differentiable m-integrands linear in J will be termed m-forms
and we term exzact any m-form homologous to 0 . We term, respectively, track
and boundary of a generalized hypersurtace L, the restriction of the functional
L(f) to m-forms and to exact m-forms, respectively. Moreover we term L
singular 1f its track vanishes, closed if its boundary does so. A generalized liyp-
ersurface L will be said to have Lipschitzian track if its track coincides with
that of some hypersurface: the symbol

[track Z, f]
will then denote, for an arbitrary m-integrand f, the classical integral of f
over this hypersurface. A similar convention is made if the track of L coiuncides
with that of a (weighted) ¢-polytope. Further a generalized hypersurface will
be said to possess a Lipschitzian resolution if it has the form [ L' de, where da
is a measure in the class of generalized surfaces which have Lipschitzian tracks.

We denote by A7 the normed space of the boundaries 2 of m-dimensional
o-polytopes in R[n], and by A their union for positive I, when the norm | 2|
of 1 is defined as the infimum of the areas of g-polytopes with the boundary
Aedm

All the above definitions may be used with m replaced by any integer &
subject to 0 < k < n, and some also when k= ¢. However, the terms may
be modified to preserve analogies, just as area is replaced by length for k<< m
and by volume for &> m . In particular for k < m the terms ¢-polytope and
hypersurface become o-polyhedren and graph. - The case k == 0 is important
for the purposes of induction. ‘

Our k-forms differ only in notation from those cf the theory of exterior
differential forms and we term derivative Df of a k-form f, the (k - 1)-form
which corresponds in that theory to the differential. Accordingly, an escact
(k -~ 1)-formn reduces to the derivative of a k-form. Further, we term rectifialle
a boundary A(Df) which, as functional of the exact m-form Df, reduces to the
track L(f) of a generalized (m — 1)-dimensional graph L, where f is any ap-
propriate (m — 1)-form f; and when this is the case the boundary 24 and the
track of L will be said to be isomorphic.
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9. - We shall use a variant of the main theorem (1.1) of [1]:

(9.1) A generalized hypersurface is closed if and only if it is the w* limit of
a sequence of closed weighted polytopes.

We couple this statement with an elementary lemma, which corresponds
to (3.3) of [1]: a closed weighted polytope is a linear combination, with positive
coefficients, of closed polytopes.

We quote further the main results of [2], rephrased with m in place of 2:

(9.2) () (L, [) ewisis for every m-integrand f homologous to a continuous one,
and for every gemeralized hypersurface L whose boundary belongs to Am. (i) If
L= [ L' du i8 a Lipschitzian resolution, then the boundary of L belongs A™ and
we have (L, f) = f [track L, f] dec for every m-integrand f homologous to 0.

(9.3) There is a one-to-one correspondence between m-integrands f(», J) hom-
ologous to 0 and lineair functionals g(1) on A", such that g(2) = (L, f) jor cvery
- generalized. hypersurface L awhose boundary is A€ .A™.

(9.4) Let f, be an m-integrand homologous to a continuous one and-let Ao €A™,
Suppose further that Ly is a generalized hypersurface with boundary Zo such that
(L, fo) < (L, fo) for all gencralized hypersurfaces L with the same boundary A
Then there cxists « non-negative m-integrand f, homologo«us o fo suech that
(Toy 1) =0

Finally we note a lemma, rephrased from (6.3) of [2], which has to be used
in proving (9.2) (ii): let @(w) be a Lipschitzian map, with Jacobian J(w) al-
most everywhere, from the unit cube of [m] into [n], let 4 denote a variable
m-dimensional parallelogram and let 1, be the boundary of the hypersurface
defined by restricting the map #(w) to 4; further let g(1) and f(z, J) be associa-
ted in accordance with (9.3), where f ~ 0. Then g(4,) is absolutely continuous
in 4 and has for almost any w the derivative f[x(w), J(w)] with respect to
regular sequences of 4.

This lemma, which easily justifies the statement at the end of Part 1, is establis-
hed by rephrasing the proof of its counterpart for m =2, quoted above, with
the help of an elementary fact which we rephrase as follows: let () have Lip-
SCHITZz constant <1 on the faces of a A of centre the origin, and satisfy the
inequality |a@(w)| < e|w| on these faces; then there exists a continuation
of z(w) to the whole of 4 for which the area of the map #(w) on 4 is < e| 4 |.

10. — We now write n = p -+ ¢, and as in Part I, there will be ¢ vertical coor-
dinates z in [#]. The horizontal projection of a multivector J € [n]™ is written
J, and clearly belongs to [p]™ when p >m > ¢; the horizontal (m — q)-dimen-
sional multivector with the same components as the vertical projection j of J
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is written j,. We observe that j,e[p]™: in fact j vanishes unless exactly
m — ¢ independent linear combinations of the vectors whose product is J are
horizontal, and we may therefore express J as a product of m — ¢ horizontal
vectors ¥ and ¢ further vectors of the form y” +- 2" where y" is horizontal and
2" vertical; § is then the product of the y’ and 2", so that j, is the product of
the y' with a scalar consisting of the determinant of the 2’. Conversely any
j, e[p]m avises from a coresponding J € [n]": it is sufficient to adjoin to the
factors of j,, ¢ further factors which are unit vectors along the vertical axes.
- Besides the m-integrands f(z, J), which we speak of as m-integrands in
[n], we shall consider m-integrands fo(y, J,) in [p] and also (m — g)-integrands
0oy, 7p) in [p]. We write P f, and P~g, for the m-integrands in [#] which depend
only on y and J,, or only on y and j, and have the same values as f, and g, .
We observe that any m-integrands in [#] which depend only on ¥ and o/,

or only on y and j, may be put in the form P-f, ov P~lg,, their constancy with
respect to certain of the components of # or JJ being sufficient to ensure that they
_are defined almost everywhere on the relevant m- or (m — q)-dimensional

hyperplanes in [p] . Itis moreover evident that f, ~ 0 is equivalent to P~* f, ~ 0.
We shall show that if f denotes an m-integrand of the form ®(z) P~* g,, where

Ge = Yp Y5 1) s

(10.1) Ptg, ~0 implies g, ~0; and g, ~0 implies f ~0.
To see this suppose first that P-1g,~0 and let § be the oriented boundary of any
(m — ¢ + 1)-dimensional simplex 7 in [p]. For any cube ¢ € [¢], the Cartesian
product 7' x @ has an oriented boundary B consisting of f X @ together with
a sum B’ of faces in each of which at least one linear combination of the vertical
coordinates z remains constant. Since the vertical projectiéns of the m-dimen-

sional multivectors associated with the faces of B’ vanish, we have ff =0,
Bt

Further, since f ~ 0 and B is expressible as a finite sum of oriented boundaries
of simplices, in which certain pairs of faces cancel out, we have also f f=20

. B
~and thevefore fj —=0. However, this last integral evidently reduces to
fXe
| @ | times that of g, on §. Consequently [ ¢, =0 and therefore g, ~ 0.
7
Conversely, suppose that g, ~ 0. Let B denote the oriented elementary

boundary of any (m -4 1)-dimensional simplex in [n], let B’ be the sum of the
faces of B if any, on which at least one linear combination of the vertical coor-
dinates remains constant, and let (2) be the section of B — B’ by the hyper-
plane z == constant, where z is any point of [¢g] . Whe find that there is an
elementary measure u in [q] such that

[ r=]2&{] g} du.
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Since g, ~ 0 the righthand side vanishes, and therefore also the lefthand side.

Moreover it is eclear that f f=0, since the multivectors in I[n]™ associated
B’
with the faces of B’ have vanishing vertical projections. Hence by addition

f / = 0 and consequently f ~0.
B

We shall term horizontal and vertical parts of a generalized hypersurface L
in [#], the restrictions of the linear functional L(f) to continuous integrands
of the form P-'f, and P-*g,, ie. to m-integrands in Fm which depend only
on y, J, or on y, j,. These parts of I define in their turn a generalized hyper-
surface PL and a generalized graph s, both situated in [p], which we term
respectively the horizontal projection and the horizontal dissection of L. They
are defined by the linear functionals

P L(f,) = L(Pf,), s Llg,) = L(P™ g,)

where f, and g, denote continuous m- and (m — g)-integrands in [7]- In the case

g =1, we term further truncated projeciion of L above, or below, or when

relevant at, the level z€[q], the horizontal projection of the truncation of L
above, or below, or when relevant at, this level, and we write these

P:+L7 P::'_L! 'PﬁL'

We recall that, on account of the topology of F™, the linear functional
L(f) is unaltered by altering f(, J) outside some toroid of sufficiently large
radius and therefore has a Rissz representation as the integral of f(», J) with
respect to a bounded measure on this toroid, and so on the Cartesian product
of a ball in [¢] with a certain toroidal set £ of values of (y, J). We can express
the measure concerned as the integral of a measure in %, which depends on &
parameter z € [¢], with respect to a measure in [¢] of the form dz 4 dg, where
du has its dervivative in dz vanishing almost everywhere in [q] . Denoting by
JL(f) the integral of f(x, J) with respect to the inner measure on E, and by N
the set of ze[q] at which du/dz does not exist or is == 0, it follows from
FusINT’s theorem that '

If) = .L(H & + [ .L()du,  where | N|=0.
x
From this formula it is clear that L(f) is uniquely defined for almost every 2
and, moreover, for u-almost every z of N where u is fixed, although of course ¢
may be chosen in more than one way. It follows that

(10.2) sL =[s.Ldz +[s . Ldy, where |N]|=0.

N

12. — Rivista di Matematica,
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We shall term s L the slice at the level z of L dissected. This slice consists of
an (m — q)-dimensional generalized graph uniquely determined for almosL
every z; the levels in N w 111 be termed sparse.

(10.3) (i) If the boundary of L belongs to A™, the slice s L has its boundary
in Am=4 for almost every level z and is closed for p-almost every sparse level. (ii) If
L is closed, so is, at almost every level z, the slice s L, and in the case ¢ =1 the
track of this slice is isomorphic with the boundary of the truncated projection of L
at this same level.

(10.4) If L is a hypersurface, the slice s L is a graph for almost every level
and vanishes for the sparse levels; further if M is the multiple system x(W), asso-
ciated with a Lipschitzian map x(w), we W ¢ [m] which defines L, then the length
of the slice at almost any level z coincides with that of the section I, .

Proot of (10.3). Since (i) is clearly valid for a weighted o-polytope,

and the slices at.sparse levels then vanish, we suppose, by adding such aweighted.

o-polytope, that L is closed; and by an easy induction we may set ¢ = 1. The
slice at y-almost any sparse level z, is the limit as A — 0 of a graph L®(g,)
in [p], where L®(g,) is the value of L(f) for an f of the form

fo, J) =D,(2) gly, ), where g =P,

where @ = (y, z) and where @,(2) is an infinitely differentiable function suitably
constructed. When ¢, is an exact (m — ¢)-form we find that f is an exact m-form
by (10.1) and therefore that L(f) == 0 since L is closed. This implies L%(g,) = 0
for any exact ¢,, and so L™ is closed. Making i — 0 we find that our slice at
%, i8 closed also. Similarly we see that the slice at almost any level is also closed,
or this can be deduced from the sécond assertion of (ii) which we shall now
establish.

To this effect, we denote by L, a weighted closed polytope with the limit L,
in accordance with (9.1), and by a slight rotation which does not affect this
limit'we may suppose that no constituent simplex of L, is horizontal. Since L,
is a linear combination of closed polytopes, we may regard as elementary the
fact that L, has no sparse levels, and can be truncated at any level, and that
the boundary of its truncated projection at this level is isomorphic with the
track of the corresponding slice; this implies that

(10.5) (s: L, )(g,) = (P. L)(Dyg,)
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for any (m — 1)-form g, in [p] . Further for almost any level z,, L can be trun-
cated at z,, and therefore also at z, + h for almost all », and there is a sequence
of h for which

1

o 13 S (e —_—

.Szo L =1lim P & (‘SL)tl'uncated at zg+h (S L)tmncated at z, } .
» .

Hence for any (m — 1)-form ¢, in [p], if we denote by G(z), G,(z) the quan-
tities (s ,L)(g,), (s, L,)(g,), we deduce from (8.3) that, for our sequence of ,

G (7)) = lim Hm {
h ¥

By applying the mean-value theorem, we find that there exists a sequence of »
and a corresponding sequence of levels z,, such that 2, =z, and G,(z,) = G(z,) .

-But by (10.5). G, (2,).is.the value of (P L )(Dg,). for z =z, and this. tends £0 i

(P .L)(Dg,) for z ==z, by (8.3). We thus have at z = z,,
(P.L)(Dyg,) = G() = (s .L)(g,)

for an arbitrary (m — 1)-form ¢, in [p], and this establishes the asserted
isomorphism.

Proof of (10.4). Let L, be the intersection of L with the set N of the
sparse levels, where | ¥ |= 0. This intersection is a hypersurface defined by
restricting the map 2(w) to a certain set W, . For any m-integrand g of the
form P-tg,, where g, is a continuous (m — g)-integrand in [p|, the absolute value
of the classical integral defining L (gy) cannot exceed the product of the norm
of gy and the partial avea of m(w), we W, . This partial area vanishes by (4.2)
and (4.3) since | N | = 0, and consequently s L, = 0. The slices of sLin ¥V,
which are also those of s L, therefore vanish for (y-almost all) sparse levels.

In the remaining assertions, we again set ¢ =1 without loss of generality
and we may suppose, in view of what has just been proved, that the vertical
component z(w) of our map is differentiable and that its gradient Z(w) does
not vanish. Further, by (8.1) it is enough to express L as a countable sum of
hypersurfaces for which our assertions are valid, so that we can use the oper-
ations of removing from W a set of measure 0 and of splitting W into countably
many subsets, to make certain simplifying assumptions. We may suppose first
that the partial derivative of z(w) with respect to some fixed coordinate of w,
which we denote by », does not vanish, and in fact is of constant sign which
we may take to be positive. We write w = (u, v), taking » to be the m-th
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coordinate and « to consist of the remaining m—1. Next we may suppose, since
z,> 0, that z, exceeds some fixed positive constant throughout W; by homog-
eneity we may suppose z, > 2 and we denote by K an upper bound of | Z(w) ]
in W. We may also suppose, by EGorov’s theorem, that the sequence of fun-
ctions

I 2w’y — z(w) — Z(w) (w' — w) 1
L' —w|

f, (w) = Sup
Jw —w {< 1fy
w'#w, w Ew
converges uniformly to 0 and we denote by », a value of » for which [fw)] <1
throughout W. Finally, by a further subdivision, we may suppose W to have
diameter > 1/, .
Tor any two points w, w' of W, we then have, writing z = 2(w), &' = 2'(w),

2, (@ —0)| <& —7—a(u —u) | + £ (1) | 0w —w|

and remembering that z,>2, |2, | <K, f, (w) <1, if follows that

(&
~—

v —v | <2 —2] + (K +1D|w —u|<(K +2)| (), 2') — (u, 2

This shows that there exsists a Lipschitzian map onto W of a corresponding set
of (u, z). This map may be supposed one-to-one (by yet another subdivision)
and evidently has a positive Jacobian. The combined mapping therefore defines
the same hypersurface L and by (8.2) we may substitute it for the map a(w).
This is equivalent to supposing the vertical component z(w) of z(w) to coincide
with #, and with this final simplifying assumption our assertions are easily
verified. This completes the proof. :

Note: The ideas on which the foregoing section is based have mitch in
common with a device used by HADAMARD in the theory of partial differential

equations, see [3].

— As in Part I, § 7, we suppose given a map z(y) from [p] to [¢], but
this time a continuously differentiable one in the first instfmee We use our
earlier notations: w(y) is the map [y, 2(y ] from [p] to [p + ¢]; & and 5 are
the Jacobian matrices of z(y) and #(y); «, f, y denote respectively any [m]*,
any horizontal [m]*¥, any horizontal [¢]*; X ;is the determinant of the columns
of « and rows of § in &, Z, is the determinant of the rows of y in %, and Z
is the multivector € [p]” with the components 7, .



[11] PARTIAL AREA -II 181

We write further P-'y for the point @ = [y, 2(y)], and given any multiv-
ector J,e[p]”, we write P~*J, for the multivector J €[p + ¢]* with the
components

J:v = g Xcﬂ (JI’){N
further, for any m-integrand f(», J), we denote by Pf the m-integrand in [p]
Pfly, J,) ={(P1y, PHJ,).

We associate with any generalized hypersurface L, in [p] a generalized relicf
hypersurface L = P-*L, in [p -+ ¢], by writing, for any f e I, L(f) = L, (Pf) .
Tts vertical part defines, as in the preceding section, a horizontal (m — ¢)-

dimensional graph sI, the horizontal dissection of I which we shall also write

¢ L, and term the contour dissection of L,. The slice of sL at the level z will
be termed contour of L, or of C L, at this level, and denoted C, L,, or sometimes
simply C,. We shall term sparse contours those whose levels belong to the
corresponding set N c[g¢], where |N | =0.

The contour dissection of I, can also be defined, without the intermediary
of the generalized relief surface I, by using the formula (7.1) of Part I. To
this effect, let j(J) be the vertical part j of J € [n]?, and for any multivector
J, e[p]™ let C J, be the multivector j, € [p]»—* defined by j(P~J,). If § denotes
any horizontal [m — ¢]*, the J-component of CJ, is '

(11.1) (jp)d = z Z/s/a (Jp)ﬂ 3
820

where f is used for a horizontal [m]*. We write further, for any g, € Fm-¢ in
[p], O g, for the integrand g € F™ in [p] defined by g(y, J,) = ¢,(¥, cJ,).
Then C L, is the generalized (m — g)-dimensional graph in [p], defined by
writing, for any g¢,€ F»t in [p],

(11.2) ‘ (0 L) (g,) =L, (0 g,).

In the case in which L, is a hypersurface in [p], we can suppose that 2(y)
is merely Lipschitzian instead of continuously differentiable. The relief hyper-
surface P-1L, may then be defined by the relief map associated, as in Part I,
§ 7, to any, bounded Lipschitzian map, y(w), we Wc[m] into [p], which
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defines L, . And the formula (10.2) remains valid provided that the definition
of ¢'J, given (10.1) is replaced by that obtained by writing, as in (7.2) of Part I,

(11.3) (7.1’)6 = Z\Aa/a‘ (Jp)ﬁf
806

where /A is the reduced Jacobian.
From theorems (10.3) and (10.4) we obtain:

(11.4) For a hypersurface L, in [p], the contowrs C,L, are (m — q)-
dimensional graphs in [p] and those at sparse levels vanish. Further if w(w),
we Wc[m]is a Lipschitzian map of the relief hypersurface L, and if 3 is the
multiple system x(W) associated with this map, then the length of the contowr at
the level z coincides for almost all z with the length of the section M, of M.

(11.5) Suppose that ¢ =1. Let L, be a closed hypersurface in [p] and let

2(y) be a Lipschitzian map from [p] to [q]; or alternaiely, let L, be a closed gener-

alized hypersurface in [p] and let 2(y) be a continuously differentiable map from
[p] to [q]. Then for almost every level z = z,, the track of the contour C, L, is
isomorphic to the boundary of the intersection of L, with the set of y for which
2(y) <z
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