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The Matrix Equation 4XC =B over a Finite Field. (*%

1. - Introduction.

Let GF(q) denote the finite field of ¢ = p» elements. In this paper we con-
sider the problem of determining the number of m X f matrices X over GF(q)
which satisfy the equation

a.1) AXC = B,

where 4, (¢, B are matrices over GF(q), 4 is s X m of rank g, C is f X t of rank
vand Biss X t. In § 3, it is shown that if the equation has any solutions, their
number is ¢°, where z = mf-— pv. A necessary and sufficient condition for exis-
tence of solutions is also obtained. The case where ¢ == I,, the identity of order
¢, was considered by the author in a paper [1] some years ago.

2, - Notation and preliminariés.

Except as indicated, lower case Greek letters will denote elements of
GF(q), ¢ = p*, p an arbitrary prime. Ixcept as indicated, italic capitals will
denote matrices over GF(q). A(s, m) denotes an s X m matrix and A(s, m; o)
a matrix of the same size having rank g¢. If 4 = A(s, m; p) it is well known
[2, Theorem 3-7] that there exist (not uniquely) nonsingular P(s, s) and @(m, m)
such that PAQ = I(s, m; p), the s X m matrix having the identity matrix
of order g in its upper left-hand corner and zeros elsewhere.
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If 4 = (o) is square, then o(4) = 3, a;;is the trace of 4. It is easy to show
that when the indicated operations are defined, then o(d --B) = o(4) -+ o6(B)
and ¢(AC) = o(C4).

For ¢« € GF(q) we define

n—1

(2.1) e(o) = 1l Hoo) = o +of + ... o

from which it follows that e(e -~ ) == e(x) e(f) and

o =0
(2.2) 2 e(ay) = {g =9

: (e 0),

where the sum is over all y € GF(g). Now, using (2.2) we can show that if
Y = ¥{(s, t) then

¢t (Y =0)
2.3) gc{g(yp)}:{o (¥ 52 0),

where the summation is over all D = Dy, s).

3. - The nnmher N(4,C,B).

Let N == N(4, C, B) denote the number of solutions X (m, f) of the matrix
equation (1.1). In view of (2.3) we have

N4, ¢, B) :g~5i2§e{a[(AX0_B)D] }

(3.1)
=q""Ye{—0o(BD)} ¥ e{a(dXCD)},

where the summations are independently over all D — D(t, s) and X = X(m, f).
Let P, , R, T be any fixed nonsingular matrices of appropriate sizes such
that
(3.2) { AQ = I(s, m; o) 50 A =PI, m; p) @1

- ROT = I(f, t; ») so O =RII{f, ¢t; ») T-1.

If we substitute into (3.1) the values of 4 and C given by (3.2),let B = B(t,s) =
= T-'DP-* so that D = TEP, let ¥ = Y(m, f) = Q- XR-, and simplify the
resulting expression by use of the property ¢(4B) = ag(B4), we get

83) N =g¢"3e{—o(PBTE)} 3 e{o[I(f,t; ») BL(s, m; Y]},

E(t, 8) r(m, 1)
Let E(t, s) be partitioned as I = (B;) for 4, j =1, 2, where By, = Ey(, o),
By = By, $—p), By = EBut—v, o) and By = Eylt—7», s— o).
For fixed ¥ in (3.3), by (2.3), the inner sum over Y is equal to q™ if the coef-
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ficient I(f, t; ») LI{s, m; p) of ¥ isequal to zero. Otherwise the sum itself is equal
to zevo. By appropriately partitioning I(f, t; ») and I(s, m; p) and computing

the product by use of multiplication of submatrices, it is easy to show that
(3.4) I(f, t; ») EL(s, m; p) =0, if and only if F,, == 0.
Using this fact in (3.3) we have

(3.5) N =g ¥ e{— o(PBTE) }s
(¢, 8

where the prime indicates that the sum is restricted to those Z(t, s) for which,
in the partitioning described above, Ej, = 0.

If we partition B, == By(s, t)== PBT as B, == (B,;) for i,j == 1, 2, where B); =
= By (0, v), Bz = Byy(9, t— ), By = By(s— g, v) and B,, = By(s — p, t — v),
compute the product By, by use of multiplication of submatrices, and finally
use properties of o and e(o) given in § 2, we find that for F as in (3.5),

(3.6)  e{—0(By B)} =e{— o(Bi, By) }e{— 0(By Ey) } e{— 0(By, E,) }.

If we substitute (3.6) into (3.5) and sum independently over all B,, E,, F,
it follows from (2.3) ’ohat the sum over the restricted F is equal to ¢*, where
w = ot —wv) +vs—p) + (t—r)(s—p), if all of B, =0, By =0, By =0,
Othexmse the sum is equwl to zero. Finally, if we use this information in (3.5) and
simplify the exponent of ¢ we obtain the ‘
Theorem. If N(4, C, B) denotes the number of solutions of the matriz
equation (1.1) over GF(q) and P, Q, R, T are any fized nonsingular matrices of
appropriate sizes such that PAQ = I(s, m; p), RCT = I(f, t; v), then

(3.7) ' N(4, €, B) = ¢™~ W(B,),

where By, = By(s, t) = PBT = (f;;) and h(B,) =1 if all f;; =0 for ¢ >p or
j >, and otherwise h(B,) = 0.

We note that this theorem contains a necessary and sufficient condition,
in terms of B,, for existence of solutions of equation (1.1). It can be shown
directly that the property of B, in question does not depend upon the particular
choice of the transforming matrices P, Q, R, T. For C = I,, the identity of
order ¢, (3.7) reduces to the result obtained previously [1, Theorem 1].
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