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On the Absolute Norlund Summability Factors. (*%)

1. - Let s, denote the n-th partial sum of a given infinite series z Uy
Let { p,.} be a sequence of constants, real or complex, and let us write

P, =3 ps Py=pg=0.
i=0

The sequence-to-sequence transformation
1

(].1) Tn — zpn——r Sy (—Pn 7= 0)
Py

defines the sequence { 7', } of NGRLUND means of the sequence {s.} gener-

ated by the coefficients {p,} [6].
The series > a, is said to be absolutely summable (N, p,), or summable
| N, p.|, if the series > | 7, — T, | is convergent [4]. In the special case in

which
_n+oc——1‘*_ I'n 4+ «) »
(1.2) 2’n~*< w1 )—m (x>0),

the NORLUND mean reduces to (C, o) mean [1]. Thus, the summability | N, p, |,
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where p, is defined by (1.2), is the same as |C, «|. Again, when

1

17

(1.3) C Pn=

the NORLUND mean reduces to the harmonic mean.
The conditions for the regularity of the method of summablhty (N, p,)
defined by (1.1) are

(1.4) lim 2% =0

and

(1.5) Slp:l =0P,), as n—>co.
i=0

If p, is real and non-negative, (1.5) is automatically satisfied, and then (1.4)
is the necessary. and sufficient condition for the regularity of the method.

2. — The series Y a, is said to be absolutely summable (R, log %, 1), or
summable |R, logn, 1|, if for

R,

R‘|”°

logn it

the infinite series Y | R,— R,—,| is convergent.

3. — Given a sequence {Zn}, if the series Y a, 4, is absolutely summable
in some sense, while in general ¥ a, is itself not so summable, then {l,,} is
said to be the absolute summability factors of the series >a,.

KoaBETLIANTZ had proved the following theorem [2] on summability fac-
tors for sbsolute CusAro summability :

If a series Ya, is |C, o] summable, then the series > tn &x is summable

[C, B for f<ot, &, f>>0, if &, =1/(n +1)*F.

In 1952 PEYERIMHOFF gave a simpler proof of the above theorem [8].
The object of this paper is to establish a similar theorem for the case of
NORLUND summability when the series is summable |C, 1 |.
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In what follows we prove the following
. Theorem: If a series Y a, is |C, 1| summable and if {p,} be a
non-increasing sequence of real and non-negative numbers, then the series > a, P,/n

is | N, p.| summable, where P, =3 p,.

=0

4. — Proof of the Theorem. For the series za,z P,jn, we have
the NORLUND mean

= (1/Pn) Z Pu—r $p== (1/-Pn) an——r Urs

T==1 LR
‘where %, = a, P,/r.
Now, sinee P_; =0,
T T fg:l (Pn+1-—r P )’Zé El ra < n+1—r -Pn—r> -Pr
+1 7 - r = —— el Il
? " re=1 'P"'H r=1 ’ "+1 Py r

Applying ABrL’s transformation and denoting ¢, = > r a, and 44, = 4, —
r=1
— Ant1, We have

Ppa—r  Pa\ Py t
T .T — : ( n+i—r  Cta—ritr .P n+1
T rgl ! { \ P1z+1 -Pn 7-2[ + 0(” T 2

Hence:

S| Tou—Ta|< S

ne=l n=1

S, A{ ( A

re=1 P 1

it n P, P,
ztr( +1—r~___r)A__‘§

Ma

pe=1 n+1 Pn 7%
il hid P1--}-1 Pn+1—r Pn-—r ) ! tn-H.]
+ﬂ§1 ,§1 b (r - 1) A( Poa P P"n (m + 1)

=Z1+22+23-

Since {p,,} is a non-negative, non-increasing sequence, it is easy to see
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‘Pn - P7l
that 227> 2 for all » <m, and hence

-Pn——r ’Pn
= Pf i In*l-—r Pn-—r‘ Pr Pm+1—r
zl<§1 A5 Z( Py 75,,*) =42 i’A?z{ Pris
== n=r r=1 *
m A m trl X m P 1,
<A t| | =5 + Pra 4 <Az~l—ﬁ—‘ TO[Z—"‘““‘H;J "},
r=1 =1 r==l

where 4 is a positive constant not necessarily the same one each time it occurs.
Now, since » a, is|C, 1| summable, > [t |/r* is convergent. Then, since
Py < (r +1) py, we have

m L m r
§1<Aqu {2 2IJ——01), as m — oo.
r=1 From ]
Further
= n Pr+1 (pn+1—r pﬂ-r\ ]
23 |3l
"z:l ,.gl (r+ 12\ Puyy P,
§ 'trl-Pr'H. e (pn~4'__ pn-H—r) 2 li IP +1 Po
A N DLt Py (r + 1?2 P,
=0 zi—tf—i—O(l) as m — co
- 2 @ °
Also:

>s =0(1), as m —> oo, from the hypothesis.

Hence 3 | T4 — T, | < oo, which proves the Theorem.

5. — Incidently it can be seen that the theorem, coupled with known results,
leads to some important corollaries for [N, p,| summability.

It is known that whenever ¥ a, is | R, log#n, 1| summable, > a,/log n is
summable |[C, 1| [5], [10]. Hence we have the following result:

Corollary I. If a series > a, is |R, logn, 1| summable, then the
(,ﬂ P’Il

e N .
TTogtmr ) summable | N, p,|

series Y
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Again, Prasap and BHATT [9] (see also PATI [T]) have proved that if {).,,}
be a convex sequence such that 3 1,/n is convergent, and if #, denotes the
CusiAro mean of order one of the sequence { n ccn} and if

tn = O[{log (n + 1) }*] (C, 1),

then the series > a, ).,L{log (n 1) }*k is summable |C, 1|. This result,
combined with the theorem, leads to another important result.

Corollary II. If {A,,} be a convex sequence such that z AnJn 18 conver-
geni and if t, denotes the CESARO mean of order one of the sequence {n a,,} and if

tn = O[{log (n +1)}]* (C, 1),

then the series Y a, A,{log (n + 1 }7* P,/n is summable |N, p,]|.

This generalises a recent result of LAL [31.
Let f(t) be a periodic function with period 2z and integrable (L) over (—o, 7),
and let the FOURIER series of f(f) be given by

fl&) ~ % tty +,§1(M cosnt -+ b, sinng) = 1—2-a,0 - é:lfin(t).

We know that the convergence of FOURIER series can be ensured by a
local hypothesis, that is to say, the behaviour of the convergence of FOURIER
series for a particular value of x depends on the behaviour of the function in
the immediate neighbourhood of this point only, and we also know that s, =
= O0(1) implies ¢, == O(1). A necessary consequence of Cor. I1, then, is the fol-
lowing result due to TRIPATHI [11].

Corollary IIX. If { pﬁ} i8 @ non-negative, NON-INCreasing Ssequence
of real constants, and {2,,} be a convex sequence of nuwmbers such that z Wi,
n

- e P
is comvergent, then |N, p,| summability of > A1) A, o

can be ensured by a
]

local hypothesis.
I am indebted to Prof. B. N. PrasaD for his valuable guidance and advice
in the preparation of this paper.
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Summary.

The paper is devoted to the study of absolute Norlund summability of the series
>y ity when the series Y a, is summable | C, 1]. '



