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Motion of a Finite Sphere in Rotating Liquid :
Motion Started Impulsively from Rest. (%%

1. « Introduction.

Howarta ([1], 1951) has investigated the problem of the flow engendered
by a sphere rotating uniformly about a diameter in otherwise undisturbed
fluid. He considers the sphere to be made up of two hemispheres joined smooth-
ly at the equator. The flow being symmetrical about the equatorial plane,
the boundary layers originate at the poles and develop towards the equator
where they impinge on each other. He has obtained a solution of the boundary
layer equations in the form of power series and has shown that the flow at the
poles approximates to the rotating disc solution of von KArRMAN (1921). Due
to lack of rapid convergence this solution cannot be used in the vicinity of
the equator. Even the approximate solution of the same problem by the
KArymAN-Momentum Integral Method does not give satisfactory results near
the equator, becanse some of the assumptions involved break down. The sol-
utions are defective in so far as they do not give any indication of outflow of
the liquid near the equator. HowarTH attributes the cause of the failure of
his solutions near the equator to the boundary layer equations, which, he
says must fail to represent the region of interaction between the two impin-
ging layers on account of the parabolic character of equations.

Nicam ([2], 1954) does not agree with this explanation. In reference [2]
he has shown that it is possible to construct a solution in power series forms
which fulfils all the physical requirements of the problem. These solutions
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have a definite advantage over those of I-IdeRTH, because apart from the
inflow at the poles they give a clear indication of the outflow near the equator.

In another paper Nicam and Rancasamr ([3], 1953) have discussed the
growth of motion in the earlier stages of development, caused by a sphere
which at the time ¢ = 0 is suddenly made to rotate with a constant angular
spin about a diameter in fluid otherwise undisturbed. .

In the present Note we have discussed the growth of motion, in the earlier
stages of its development, caused by a sphere which at the time ¢ = 0 is suddenly
made to rotate with a constant angular spin ¢ 2 about a diameter in the liquid
rotating about the same diameter with an angualar velocity £2. The solufions
have a limitation in that they give initial motion only. They give no informat-
ion regarding the time after which the steady state is established.

2, - Equations of motion.

In curvilirear coordinates the equations of motion (HowARTI [4]) are
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and the equation of continuity is
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where %y, h,, Ky, K, have the meanings as explained in the above reference.

Tn this problem we use spherical polar coordinates r, 0, ¢ with » measured
radially outwards from the centre of the sphere, 0 measured from the axis of
the rotation and ¢ the azimuth. In order to preserve w for the velocity normal
to the surface (i.e. in the direction r increasing), we shall use w, » for the velocit-
ies in the directions in 0, ¢ increasing respectively. Then writing

hy=7r, h,=0, K,=0, K,=—(1/r)cotd
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as in reference [1] and neglecting the terms of the az1muthal variation, equat-
ions (1), (2) and (3) become
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The pressure gradient along the surface can be computed for the frictionless
flow at a large distance from the sphere and for it we write

1 9p o ov

. 1 L .
E;{é_vg_vm»——-?mnO .Q;’)COS@ Q = rsinf cosf - Q

as v = r8ind-0Q. ’
Hence equation (4) becomes

ou | u au ou o . o%u
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If the liquid is rotating with an angular velocity Q and the sphere is made
to spin with an angular velocity o £ about the same diameter, the boundary
conditions to be satisfied are

(8) u=aw=0, v=rsing-cf, whenr=ua, t>0,
together with
(9)  =w =0, v:o'sinﬂ-.Q,‘ when 7 - oco. .
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3. - Simplification of the differential equations.

Let us assume

(10) w = 2% rsinf cosl - ¢ f(n),
(11) v = Qrsind - gn),
(12) w o= — 2 02 Y2 P2 (3 cos? 0 —1) R(z),
where
r—0
(13) n = T

Substituting these values in (7), (5) and (6) we obtain

(1) froogf—d =4 —dgP— 4 Q2 cos20 - 12—

@IV @FEN  ay/iif
T

8 U242 2f)
8 91242 (3 cos® 1)h[ sdi | - ,

(15) g +2ng =41y 02 cos2 —

— 82223 cos —1) b [5_’ +—1- g + 4 02 cos20 - tzfg——ig«’\/ﬁ.
r 2 (v T o

(16) f—h =0.

During early stages of motion when ¢ is small (or in boundary layer termin-
ology : when the thickness of the boundary layer is small) we may neglect the
terms containing powers of ¢. Therefore omitting such terms in the above
equations we get to a first order of approximation the following equations:
17) fro-2mf—df s Ay

(18) g 209 =0,

19) =,
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where dashes denote differentiation with respect to ».
The boundary conditions now are

(20) f=0=h g¢g=0, when n =0,
(21) f=0, g=1, when 5 — oco.
These equations and the boundary conditions are the same as the equat-

ions in the problem of Rotation of finite dise in rotating fluid, boundary
layer growth: motion started tmpulsively from rest by the present author.

4. - Solution.

Solution of equation (18) is
(22) g=4Jdefn -+ B,
where erfy stands for

n

2 2
— T dn.
vV / !

1]

Applying the boundary condition (20): ¢ =B and 1 = 4 + B, whence

A=1—¢ and B =g.
Thus equation (22) becomes

(23) gn) = (1 — d) erfn +o.
Substituting this value of g(n) in (17) we get
(24) J" + 2nf' — 4f = 4(1 — 6%) — 80(1 — o) exf y— 4(1 — 0)2 exf2 ).
Solution of (24) is
(28) f=A(l + 20 + B[ + 29) exfe n— (2/r/m) 7 67""] + 2(1 — 0%t —
— 20(1 —o)[n® exf n— (1/2) exfy 4 (5 e~ A/7)]—

— 201 — o) [(2/\/m)m e exfy + (1/m)e™*" + 2 exf? 7]-
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The constants A and B aré to be determined by applying the boundary
conditions (20) and (21). So we have

0 = A -+ B—2(1— o) (1),

0 = A1 + 2% + 2(1—0?) n*—20(1 — o)t —1/2)—2(1—0)n?
when 7 — oo,
or -
0={4+ ol — o) }+ 22 [A +1—02—o(1—0)—(1—0)?]
when 9 — oo,

which can be satisfied if
A =—o(l—o0);

and therefore

5 (Lo o —2)]

4

Substituting the values of 4 and B the equation (25) becomes

(26)  f=—o(l— o)l + 27°)

. (1—0)2 + o(z—2)] [(1 + 292 erfen — —2: i e—rf]
V7

7
L 2(1 — %) — 20(1 — o)[n® exf p — (1/2) exf 9 + (7 e~ [A/T)]
—2(1 — o) (2/\/mm e~ exfy 4 (1 [m)e—2" + n* erf? ] .
Sinee from equation (16) f == A', hence tunction h is obtained by a quadrat-
ure of f.

Hence b is obtained as

b= —o(l—a) [1 + @/3)]

L=t 2 )., 2 o o]
T Uﬁ +§773]91f077"—m(1 +77)6"] +

7
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Since h = 0 when % = 0, we have

2(1 — —_ 2
constant = ( 92— oz + )

3'\/7'[ T

Therefore the complete value of 4 is

@) h=—o(l—o)(n+ 23)) +

(L —0)(2 +o(z —2)] 2,
S [ (T

2) e ]
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5. = Graphical representation.

The functions f(n), g(n), k() have been discussed by the present author
in detail for various values of ¢

' . Appropriate graphs have also been drawn
here (Fig. 1 and Fig. 2).
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6. - Discussion of the results.

From the expressions of «, v, w given by (10), (11), (12) it is evident that «
vanishes both on the axis of the rotation and in the equatorial plane, v vanis-

Tig. 1: Graphs of g(%).

hes on the axis of rotation; the various values of o, whether it is positive or neg-
-ative, greater than 1 or less than 1, affect the inflow or outflow as discussed
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in the case of the rotating disc in the rotating liquid by the present author.

Fig. 2: Graphs of f(n)

7. = Stream funection.

A stream function may be defined by the equations

r oy . 1 dy
T sing or’ v

T sing 28’

whence the stream function may be expressed

Y =2 0% 17 1% cosf sin20 - h(y) .
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In conclusion I thank Dr. M. Ray, D. Se., F.N.I. for the kind help in the
preparation of this paper.
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Summary.

The growth of motion of revolving flow in the earlier stages of its development caused by
o finite sphere which at t = 0 is suddenly made to rotate with a constant angular spin in
revolving liquids has been discussed. The various cases when the angular velocity of the
disc is greater or less than the angular velocity of the rotating fluid have been discussed. The
case when the sphere rolates in the opposite sense to that of the external flow has also been
considered.



