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M. K. SEx (¥

On Some Properties of an Integral Function f(2)=g(2). (*¥)

1. -~ Let
(1.1) 1) = éo“" o
and
(1.2) ngépw

be two integral functions. Then

(1.3) f2)g(e) = 3 @, by 2

n=0
will be an integral function. For

liminf|a,| Y = + co,  limint|b,|™ = + co,

" n-> o n—c

therefore
lim inf | @, b, |7/" = + co.

B> 00

Let f(z) be the s-th derivative of f(2):

(1.4) fP12) =D an—1) ... (n—s +1) a, 2~ .

8

iMs

(*) Indirizzo: Department of Pure Mathematics, Calcutta University, Calcutta,
India.
(**) Ricevuto: 8-IX-1967.



318 M. K. SEN 2]

Similarly,

(1.5) §%2) = 3> nn—1)...(n—s + 1) b,z

Further, let
M(r, s) = max | f(2) +g“(2) |
lg]=r (8 :0, 1, 2, )y
ﬂ[:k(/r, 8) = NaAX l (f(z) *g(z)>(8)]

|z|=r

where (f(2)xg(2))"® is the s—th derivative of f(2)xg(2), i. e. of the series (1.3).
Let u(r, s) be the maximum term of f9(2)xg(2) for |2| =7 and »(r, s)
the rank of this term.
In this paper we have studied some of the growth properties of f*”(z)+g*(z).

2. — We first prove in this section the following

Lemma 1. If f(z)xg(z) be an integral function of finite order g, then
=)= g(=) s an integral function of finite order .

Proof. It is known ([1], p. 9) that a function F(z) = > ¢, 2" will be an
n=0

integral function of finite order g, if and only if

1 1/ 1
lim ing 2811
N> n logn )
Now, for f9R)#g0(e) = > n¥n—1)2... (n—s -+ 1)%a, b, 2%,

n=8

’2 ¥ — 2 ves r — 2 !,
lim ing log{ 1/(n*(n — 1) (n—s + 1)%]a,b,])} _
B> % logn

1 1 ' D, 1
—1tim inf 801D 1
N> n logmn 0
Hence the lemma.

Theorem 1. If f(2) and g(z) be two integral functions of finite orders o,
and g, respectively, then fU(2)xg'(2) is an integral fumction of finite order o
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such that

1
(2.1) ot

Proof. Since f(z) = > a,2" and g(2) = > b, 2" are integral functions of
n=0 n=0 =)
finite orders p, and p, respectively and f(z)xg(z) = > a, b, 2", therefore we
n=0
have ([2], p. 421) the (2.1).
Further, we have proved in Lemma 1 that f(2) «¢*(2) is an integral function
of the same order as f(z) «g(z). Hence the theorem.

3. — In this section we are going to prove another lemma which will be
used in the proof of the next theorem.

Lemma 2. If f(z)+g(e) be an integral function of finite order g and type
T(0 < IT'< o), then f9z)xg"(2) will be an integral function of order o and type T.

Proof. In Lemma 1 we have proved that f®(z)+¢2) is an integral
function and of order p.

It is known ([1],p. 11) that an integral function F(z) = > ¢, 2" of finite order

n=0
¢ will be of type 7' (0 < T' < o0) if and only if
. 1
Him sup {— n| e, ]4’/"} = T.
T 02 e Q
Now, for fU2) #g0(e) = 3 mA(n—1)2 ... (n—s +-1)2a, b, 2",

n=s

lim sup -lfn, n¥m—1)2 ... (n—s -1 0, b, |97 =
ep )

n-> 0

n—r o

= lim sup {—1 n|a,b, ]9/”} =1,
e

22
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Theorem 2. If f(z) = > a,2" g(&)= > b,2" be two integral functions

fe=( n=0
of fimite orders p, and g, and finite types T, and Ty respectively, then f[9(z)xg(2)
will be an integral function of finite order o and finite type T, such that:

() (eTo)' > (eI, o) Ve (oI, 92)1/92 ;

(i) if f(z) and g(2) are of regular growth and | @.(@,4 |, | Dafbuss| be now
decreasing functions of n for n >0y, then

(-TQ)I/Q = (T o))" (T, g.)"%.
Proof. (i) Consider
e [n?(’nw—— 2. (n—s +1)2 [ @, by Hun >

> ntetle [p2n — 1)2 ... (n—s -+ 1)2

a, b, l]l/n:
=l p(n—1)... (n—s +1)] a, |
sl [n(n—1) ... (m—s + 1) b, | ]
Taking limits of both sides and using Liemma 1 and Lemma 2, we have
(eTg)e = (eT; p,)*er (T, g,)*ee.

(i) If f(2) and g(=) are integral functions of regular growth and | a, /@, |
|b4/bats | e & non-decreasing functions of # for # >mn, , then ([3], p. 26)

Consider

nile [w*(n—1)*... (n—s + 1)

&, bn l}lln::
=ptete pn —1)2 . (n—s +1)2] a, b, |T".

Proceeding to limits, we have

(T'g)'# = (T'y @)1t (T’ o) "'e2.
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4. — Here we obtain inequalities connecting the maximum modulus of
f(s)(Z)*g(S)(z) .
Theorem 3. Ifds

B, M(R, 0)

1
F {300, 0) — [PO) | < M, 1) < s
where

F(0) = f(0)=g(0) for 1< R, <R.
Proof. We can easily see that

@) = e (.

Therefore

x

? “c%(f (2)xg(2)) = f @)% g™ dt,

0

where the integral may be taken along a straight line.
Choosing # such that

# e | == A 1),

we have
My, 1) < M(r, 1).
Again
zd
ferwg(e) = [ 3 [#0) xg] dt +10)9(0),
0

therefore

M(r, 0) <r M, 1) + | {(0)%g(0) | .
Hence
(4.1) w < My, 1)< M(r, 1).

On the otherhand by CaucmY’s integral formula

d

12(0) %40 = dz[ d”‘f g)} 2oi /(t z)? dt(f 9)d,
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where C is the circle |t —z| =R, —7 (|| =7r<<Ry).
Choosing # so that | f®(z)=g®(z { = M(r, 1) and knowing that |¢|<R,,
we have

Ry MRy, 1)

Ml 1) < =

Again

J{w)= g{w)
21 | (w — 2)?
T

o [f 2)eg(e)] = dw ,

where I" is the circle |w—z]| = R—R, (|2| = R,<<R). Therefore

' MR, 0)
MR, 1) < o
Henece
R, a* 1 ¥
(42) j[f(»r’ 1) < 1 (Rl s ) < Rl l[(R, 0)

Bi—r  (R—R)E -1’
Combining (4.1) and (4.2), the result follows.

Remark. Taking R = 4r and R, = 27 we can easily see that the order
of f(z)xg(z) and FU(2)xg™(z) are same.

Theorem 4. If f(z) and g(z) be two integral functions given by (1.1)
and (1.2) of finite orders g, and g, respectively, then

M(r, s --1)< M(r, s) roe-tte,

where o is the order of f(=)xg(z) and for sufficiently large values of r and ¢ >0.

Proof. We know from Theorem 1 that if f(z) and g{(z) are integral func-
tions of finite orders g, and p, respectively, then f(z)+¢g(z) (s =0, 1,2, ...)
is also an integral function of finite order ¢ such that

1 1

— 4 —
i

& 2 ’

D -
\Y

Since f(z)xg(z) is an integral function of finite order g, therefore from a
known result ([4], p. 34) we obtain ‘

ulry 8)<< M(r, 8) << u(r, 8) r°te,
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where w7, s) is the maximum term of f¥(z)x¢“Y(2) and »(r, s) rank of thig
term.

Now for f[2)xg(2) = > n¥n—1)* ... (n—s +1)*a, b, 27,

we have
wry 8) =[wlry 8) {u(r, s)—1}...{w(r, 8)—8 +1}12| @ b0 | 777,

wlry s +1) =[wr, s +1){p(r, s +1)—1}.. {o(r, s +1)— s}

. I av(r,s+1) bv(r,s—i«l) l 7.r(r,s+1)—5 B
Therefore
(4.3) uiry s +1) <M s 1) s <20 D, s 11
Hence
My, s +1) < ulr, s +1?7'9+5, for & >0,
< ,u(r,» ) pietet for large r,
< J(r, s)rfetet for large r.
Remarks:

(1) For large r and 0 < 9 << 1/3 it follows from the above theorem

My, 0) >Mr, 1) >... > M@, s) >....

(2) If f(z) = > a, 2" and g(=) =2 b, 2" are two integral functions of same
n=0 n=0

order g, and of regular growth and |@./@ui ], |ba/basa| be non-decreasing
sequences, then
M, s +1)< M(r, s)rO/Pate—t,

Since from Theorem 1 we have 1/p = 2/p,, therefore from Theorem 4 the
result follows.
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(3) I o' = max(g,, g.), then
M, s +1)<< M(r, s) rO/®e+e—1,

Since from Theorem 1 we have 1/¢ > (1/¢,) + (1/g,), therefore 1/ >2/¢’
and the result follows from Theorem 4.

(4) If p, and g, satisfy the following conditions 0 << g, << %, 0 <T 0. <<},
then
M(ry 0) > M{r, 1) >... > M(r, 8) > ....

Since 1/¢> (1/0,) + (1/¢;), therefore p< ;. Hence from Remark 1 the
result follows.

5. — Next, we obtain inequalities involving the maximum term and its
rank of

L

F92)  g'(z) = z (r—1)2.. . (m—s +1)a,b, zvs,

Theorem 5. If »(r,s), v(r, s 1) denote the rank of the maximum term
of 1(2) xg(2) and fTV(2) xg“TV(2) respectively for |z | =r, then

(5.1) [, 5)—s)< E%(:_tl/{m s +1)—sk.

Proof. We have from (4.3)

- u(r, 8+1)

pre <{ulr, s +1)—s}.

Also
plry s +1) =[w(r, s +1) {p(r, s +1) — 1 1. {p(ry 8 +1)—8}J* |y, 4 1 Prcry e} #7007

>[o(r, ) {p(r, s);—l}... {o(r, 8) =81 | @iy Dy | 70T
= {v(r, 8)—s}*ulr, s)r,

which leads to the required result.
Applications:

u(r, s + )fplr, s)

= 2
log » &

i) lim sup !

T=—>Co
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where p is the finite order of f(2)=g(2).
From the second inequality of (5.1) we have

s+ D) _ L
log{f W[<“loglv(? s +1)—s}

logv(r, s + 1)

and, using Lemma 1 and lim sup Tog 7

r— 0

= o, we get

log {r u(r, s + 1)/u(r, 5)}

20.
logr e

N

{5.2) lim sup

r—>0

Similarly, from the first inequality of (5.1) we can deduce

log {r u(r, s + L/u(r, s)} > %

{5.3) lim sup Tog 7

7
Uombining (5.2) and (5.3) the result follows:

log {r u(r, s + Djulr, 8} _ o,
log r o

{ii) lim inf

T 0

this follows from the inequalities in (5.1).

Theorem 6. If »(r, 8) and v(r, s + 1) denote the rank of the maximum
terms p(r, 8) and u(r, s + 1) of fO(2) +g*)(e) and fCHV()xg+0(e) respectively for
|2} ==, then, at the points of ewistence of u'(r, s), r >0,

»(r, 8) — 8 r

' 1l2
AT < u -
vr, s +1)—s Swly ) {ﬂ(n s) plr, s + 1)} <t

Proof. We have

{t, s) —
(8.4) log u(r, §) = log u(ry, ) -+ f ”___St_f

To

di.

Differentiating we get

w'ir, s) N »(r, 8) — 8
w(r, 8) - ”

(5.5)

at the points of existence of u'(r, s).
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Again from (5.1)

v ulr, & - 1)11/2

5.6 (77, 8) — 8 < . EN, [
(5.6) (1, 8) 3\{ ) f <y(r, § +1)—s,

Hence from (5.6) and (5.5) we find

(5.7) ,lL’(?’, s) {Iu(/)-, s - 1)}1/_, .

{utr, 9)}% 7

Again, using (5.5) and (5.7), we have

%

»r, 8)— 8

.
s s ) {u(r, 8 plr, 5 + 1)} <1

Corollary:
lim ( ", 8) ! %)~—1
e U Sl e, s w0 )T

This follows from »(r, s) ~u{r, § + 1).

Theorem 7. If f(z)xg(z) be an integral function of order p (0 << o << co)
and lower order A (0 << A <C oo), then

log wu(r, s) 1

lim sup »(r, s)logr o

r—>co

L=IR ==Y

Proof.

f2)2g9(%) = 3 ni(n—1)2... (n—s +1)2a, b, 2.

Since f(2)«g(2) is an integral function of finite order g, therefore, by Lemma 1,

F9(2)#g*(2) is also an integral function of finite order g and so

—log {n2(n — 1)%... (n — s + 1)*| @, b, |}
n logn )

1
- ==lim inf
e

n—> 0

Hence

—log{n*n—1)*...(n—s + 1)2| @, b, |} >((A/o) — &) nlogn  for u >u,.
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log u(r, ) =log [{v(r, )P {p(r, ) =1} ... {o(r, 8)—s + 13 @ Do, T+
+ {u(r, s)—s}logr<
<— (/o) — &) »(r, s)logr(r, s) +»(r, s)logr for 7 >r,,

using the above inequality, or

1o 7, log »(r, 5) (1
logulr, 8) g logvtn o)l for 1 >n.
»(r, s) log r logr \e
Hence
. logpu(r,s) . 4
T, 910 =1 Ty

Theorem 8. If f(z) and g(2) be two integral functions, then

. . log [r w'(r, 8)/p'(r, s —1)]

(i) hr,ri, S:Lp Tog 7 >0,
. log {r[p'(r, s)fp' (v, 0)]/5

(i) 1im sup og {r[w'(r, 8)[u'(r, 0)]1/} >
— 0o log »

’

where o is the order of f(z)=g(2) and u(r, s) is the mazimum term of [N2)xg®(2).
Proof. We have from the second inequality of (5.1) and from (5.5)

wr, 8)—s w(r, s)

(5‘8) 7 ﬂ’(T, 8§ — 1) *

Therefore

! /)., )
log {r PT::T.(?S:_I)} >log [»(r, s)—s].

On proceeding to limits and using the result of Lemma 1, (i) follows. Again
giving to s in (5.8) the values 1, 2, ..., s and multiplying together, we obtain

wr, s) p(r, §)— s|*
u'tr, 0) >{ 3 } )
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From this regult (ii) follows.

Theorem 9. If f(z) and g(z) be two integral functions, then

7, v(ry,8)—s (75, p \P{rg, 8)—s
(5.9) <—) < L——; < (—2) : 0< <.

=
7 u(ry, s ry

2

Proof. It is

r

1og,u(7~, 8§) = log ﬂ("o, s) [ﬁ—w—’——i—)—:—sdw
From this we can write
(5.10) log p(ry, s) <log u(ry, 8) + [»(r;, s)—s] log ;_’
1
(6-11) log pu(ry, s) >1log u(ry, 8) + [»(ry, s)—s] log ;‘ .

1

(5.10) and (5.11) lead to (5.9).

In conclusion, I offer my grateful thanks to Professor S. XK. BosE for his
guidance in the work.

References.

[13 R. P. Boas, HEatire Funciions, Academic Press, New York 1954,

2] R. WiLsoN, Hadamard multiplication of integral functions of finite order and
mean type, J. London Math. Soe. 32 (1957), 421-429.

3] R. S. L. SrivasTava, On the order of intcgral ﬁmctions, Ganita 10 (1959), 23-30.

{41 G. VarLiroN, Lectures on the General Theory of Iniegral Functions, Toulouse
1923.

LR



