Riv. Mat. Univ. Parwa (2) ¥ (1968), 59-65

SURJEET SINGH (%)

On Pseudo-injective Modules. (*%)

1. - Introduction.

Let R be any ring. An R-module M is said to be a pseudo- -injective module
if for each submodule N of M, every R- monomorphism of N into M can be
extended to ¢n R-endomorphism of J. The concept of pseudo- injective modules
was introduced by the author and S. K. Jarx [7]. Some coaditions [6] were
determined under which a pseudo-injective module is quasi-injective. In this
paper we prove two theorems, one of which states that any pseudo-injective
unital module over a principal ideal domain is quasi-injective. Other result is
given in Theorem (4.7).

2. - Preliminary definitions and notations.

All the rings considered in this paper are supposed to be with unity, and
every module is supposed to be unital. For any ring R, by an R-module we
shall always mean a right R-module. An R-module 3 is said to be an injective
B-module if for each R-module 4 and for each submodule B of 4, every R-hom-
omorphism of B into M can be extend to an R-homomorphism of 4 into A
An E-module M is said to be a guasi-injective R-module if for each sub-mod-
ule N of M, every R-homomorphism of ¥ into 3, can be extended to an
R-endomorphism of 3. The symbols 374, R4 denote the singular R-submodule
of M, and rig ht singular ideal of R respectively. Let R be a ring with R4 = (0).
In this case % denotes the maximal right quotient ring of R as deﬁned by
JOoHNSON [3]. It is known that if ¢ be any ring such that R € @ € R, then Q:R.

(*) Indirizzo: Department of Mathematic, Kirori Mal College, Delhi 7, India.
(**) Ricevuto: 24-XI1-1967.
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A ring R is said to be a right Gorpie ring if it has following properties: (i) R
satisfies ascending chain condition (a. c¢. c¢.) on annihilator right ideals, and
(ii) R does not contain any infinite direct sum of right ideals. Let R be a semip-
rime right GoLDIE ring. GorLpik [1] proved that R has a classical right quot-
ient ring &, which is semisimple artinian. As a consequence R“= (0) and R
exist. JoENsON [5] proved that R =8.

3. — Let M be an R-module. An element e M is said to be torsion el-
ement if # a= 0 for some regular element « (i. e. an element with is not a zero
divisor) otherwise it is said to torsion free element. An R-module M is said to
be a torsion module if every element of I is a torsion element.

(3.1) Lemma. Let M be a pseudo-injective module over a principal ideal
domain (commutative) R, such that M is not a torsion module, then I is injective.

Proof. Since M is not a torsion module, therefore there exist v e I
such that 2 e == 0 for every a{s£0) € B. Let a(40)e R, N=wa K. Then N is a
submodule of M and the mapping

n: N>

such that n(wab)=ab 10r every beR is a R-monomorphism. Let £ be anendom-
orphism of M which is an extension of #. Let &(#) =y. Then y a= &z a) = =.
Thus for each torsion free element w € M andf or each a( 0) € I, there exist
v € M such that

() w=va.

Now let 7 be any torsion element of #. Then x -+ 7 is torsion free. Thus
given a € R, a 0, there exist ze€ M such that 2 4+ 2 =z «a. Then h = (z—¥) «.
This fact along with (=) implies that M is a divisible module. But any divisible
module over a principal ideal domain is injective ([8], Chap. II, Theorem 3).
Consequently M is injective.

Let A be a torsion module over a principal ideal domain R. Let p be any
irreducible element of R. M is said to a p-module if for each w e M, zp*=0
for some positive integer k. M is said to be a cyclic module in case M =a R
for some @ € M. M is said to be a quast cyclic p-module if M is a p-module, con-
taining a countable number of non-zero elements x; , @, , ..., %, , ... which gener-
ate M and further a; p =0, 2,4, P = o, for every 4. (We know that any abelian
group can be regarded as module over the ring Z of integers and Z is a prin-
cipal ideal domain. The above concepts are simple generalizations of the concept
of abelian p-group, cyclic groups, quasi cyelic p-groups or type p, where p
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is any prime integer. These concepts for abelian groups are discussed by FucHs
in [2] (Chap. I, Sect. 3, 4, 7)). A module I is said to be a weakly cyclic p-mod-
ule if it is either a cyclic p-module, or a quasi cyclic p-module. Any homom-
orphic image of a weakly cyclic p-module is a weakly cyclic p-module. Any
two weakly cyclic p-modules are isomorphic if any only if they have same an-
nihilator ideals. Any proper submodule of a weakly cyclic p-module is a cye-
lic p-module. The family of all submodules of a weakly cyclic p-module is
totally ordered under the inclusion relation. Thus a weakly cyclic p-module
does not have any proper direct summand. By usual application of Zorx’s
lemma it can be easily seen that any weakly eyclic p-submodule of a torsion mod-
ule is contained in a maximal weakly cyclic p-submodules. (The proofs for the
above observations are almost on the same line as for Abelian p-groups, p any
prime integer.) For any submodule N of M ann (N) denotes the ideal
{a e R: Na = (0)}. It can be easily seen thatif I/ is quasi-cyclic p-module then
ann (M) = (0). This fact we denote by saying that ann (1) = p* R.

(3.2) Lemma. Let M be any pseudo-injective torsion module over a princip-
al ideal domain. Let p be awy irreducible element of R. Then any two maximal
weakly cyclic p-submodules of M are isomorphic.

Proof. Let N,, N, be any two maximal weakly cyclic p-submodules.
Let ann  (N,)= p"E, ann (N,)=p"R, where n and m are either non negative
integers or else any one of them may be infinity in case any one of N,, N, is
quasi cyclic. Now N, is isomorphic to N, if and only if # = m. Let us suppose
# >m. In this case m = 0 since m == 0 implies N, = (0) g_Nl . For n following
possibilities are there: (i) » is infinite, (ii) » is finite. Let # be infinite. In this
case N, is a quasi-cyclic p-submodule. Thus it has a countable set of non-
zero members @, , %,,..., #,,... which generate N, and x, p=0, x,, p=#, for
every ¢ If we put N; = &, I then a.nnR(N;): p™ R. Consequently N; ~N,.
Let now # be finite. In this case ¥,—= yR for some y € N. Put N; =y R prm
Then N; is a submodule of N; such that annR(N;) = p» K. Again N; ~ N,.
In any case we find that N, contains a submodule N; isomorphic to N,. Let
y,: N, — N, be an isomorphism of N, on to N,. Since M is pseudo-injective,
we can find an B-endomorphism ¢ of A which is an extension of . Then ¢(N,)
is a weakly cyelic p-submodule containing N,. Consequently ¢(N,) = ¥V,
because of maximality of N,. Then we have

N, =kerp ®X,.

Now kerg = (0) as N; #= N,. Also N; = (0). This contradicts the fact that
a weakly cyelic p-module cannot have any direct summand. Hence »n <m.
Similarly m <#. Thus » =m and N, ~ N,.
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(3.3) Theorem. Any pseudo-injective module over a principal ideal dom-
ain is quasi injective.

Proof. Let 3 be any pseudo-injective module over a principal ideal
domain R. If M is not a torsion module then by Lemma (3.1) 3/ is injective.

Let us now suppose that I is a torsion module. Let N be any submodule of
M and o: N— M any R-homomorphism. By usual application of ZoORN’S
lJemma we can find a submodule N'of M containing ¥ and an R-homomorphism
n: N' — M which is an extension of ¢ such that 5 has no further extension.
We want to show that N’ = M. Let N’ JM. Then }/N'is a non-zero torsion
R-module. Then there exist a non-zero element y =y + N' of M/N' such that
ann,(y) =p R for some irreducible element p of R. Let ann,(y) =a E then
a = 0, since M is a torsion module. Then % « = 0. This gives p divides a. We
can write a = b p%, where b is such that highest common factor of b and p is
equal to 1. Then ¥ 6 =y b-+N is such that ann,(y 6) =p R, ann (yb) = p“R.
Thus without loss of generality we may assume that y is a non-zero member
of M/N' such that ann,(y) = p R, ann(y) = p* R.

Nowy peN', as y p =0. Thus 5{y p) is defined. Either 5(y p) =0 or »(y p)5<0.
Let N, be the submodule of M generated by N’ u {y}. Let us suppose n(y p) = 0.
Define %': N, — M such that n'(z + y a) =n(z) for everyze N', ae R. By
using the fact that n(y p) =0, we can show that ' is well defined R-homomor-
phism. Further %’ is an extension of #. Since N, = N', therefore n’ is a proper
extension of %. This is a contradiction. Thus we have (y p)=0. As y p* =0,
therefore 7n(y p)p** =0. Thus ann,[n(y p)] = pP R for some f << a—1. Now
y R and n(y p)R are both non-zero cyclic p-submodules, they are contained
in two maximal weakly cyclic p-submodules say N, , N;respectively. By Lemma
(3.2) N, ~ N, and ann (N,) == ann (V;) = p* B for some y > «. Then N; con-
tains a cyclic p-submodule say N, isomorphic to yR. Then ann (V;) = ann (y k) =
=p*R § pPR=ann (5(y p)R). Thus we have N, 2 n(yp)R. Now it can be easily
seen that there exist 2z e N, such that n(y p)==2p. In this case again define
&: N,— I such that & -+ y a) = n(x) + za for every x € N, a € R; £ is a well
defined R-homomorphism and it is & proper extension of . We again get a
contradiction. Thus we must have N’ = M. Consequently 7 is an R-endomor-
phism of M which is an extension of ¢. Hence I is quasi-injective.

4. — Let K be any right ORE domain with unity. Let the division ring .D
be the classical right quotient ring of K, n be any positive integer, K, and D,
be n X » - matrix rings over K, and .D respectively. Then D, is a classical
right quotient ring of K, , and K, is a prime ring. Let K be any ring such that
K, CRCD,. Then R is a prime right Gorpie ring having D, as its classical
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right quotient ring. Further R and D, are both right quotient rings of K, in
the sense defined by JomnsoxN [3]. Let A be any R-module.

(4.1) Lemma. M4 = (0) if and only if I is torsion free.

Proof. Itis proved by Gorpiein [1] (Theorem (3.9)) that any right ideal
of R is essential if and only if it contains a regular element. Now any element
x€ M is a torsion element if and only if ann (z) contains a regular element.
Thus « is a torsion element if and only if ann,(x) is an essential right ideal.
This implies that M4 = (0) if and only if M is a torsion frce R-module.

Hence forth we shall assume that 47 is a torsion free R-module. Since K, C R
we can regard M as a K,-module. For any sub-ring 7 of R, M4T) denotes
the T-singular submodule of 3. Let {¢;;: 4, j =1, 2, ..., n) be the matrix units
of K, and D,. Now ife; can be regarded as a K-module. By defining for any
vepn€Mey, acK, (wey) a = x (aey).

(4.2) Lemma. I is a torsion free XK ,-module.

Proof. Since R is a JouNsox right quotient ring of K, by [5] (Lemma
(2.2)), M4R) = HK,). By Lemma (4.1) M4(R)= (0). Consequently M4(K,)=0.
Taking R=NK, in Lemma (4.1) we conclude that I is a torsion free K,-mod-
ule.

(4.3) Lemma. M ey, is a torston free K-module.

Proof. Let weye Me, and a4 0) € K such that (# ¢;y)a = 0. The elem-
ent > a e,; is a regular element of X, and (wey,) > ae; = 0. This gives we;; =0
=1 i==1

as M is a torsion free K ,-module. Hence Me,, is also torsion free K-module.

Let R’ be any ring with unity, R, be the n x n matrix ring over R'. Let N
be any R,-module. Then Ne,, can be regarded as an R'-module. LEVY [6]
(Corollary (2.3)) proved that N is an injective R,-module if and only if Ne,
is an injective R’-module. By similar arguments we can prove that N is a pseudo-
injective R.-module if and only if Ne,, is a pseudo-injective R’-module. We
state without proof the following

(4.4) Lemma. If M is a pseudo-injective K ,-module, then M ey, is a pseudo
injective K-module.

(4.5) Lemma. If M is a pseudo-injective R-module, then M is also a
pseudo-injective K ,-module.
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Proof. Let ¥ be any K,submodule of M and ¢: N—MW any E-monom-
orphism. Now by Lemma (4.2) 3 is a torsion free K ,-module. Since § =D,
is a classical righ quotient ring of K, by [6] (Corollary (1.6)), ¢ can be extended
to & S-monomorphism ¢': NS—IS. Let N, = ¢’ [¢'(¥8) n M ]n M. Then N,
is an R-submodule of M containing & such that ¢'(¥;) € M. Let 7 be the res-
triction of ¢’ to N, . Then # is an R-monomorphism of N, into A, # coincides
with ¢ on N. As I is a pseudo-injective R-module, therefore 5 can be extended
to an E-endomorphism & of M. Clearly & is a K,-endomorphism of M7, and &
is an extension of ¢. Hence 3/ is a pseudo-injective K ,-module.

(4.6) Lemma. = MS, where j} denotes injective hull of M, and 8 = D,.

Proof. Since I is & torsion free R-module and S is a classical right quot-
ient ring of R, A can be embedded in a S-module MS. Now MS is a torsion
free divisible R-module. Thus by a result of LevyY [6] (Theorem (3.3)), MS is
an injective R-module; and ar » C MAS. The fact that every element of MS is of
the form m d-, where mel, d € R and d regular, implies that 178 is an essential
extension of M as an R-module. Consequently M8 ¢ i , Since 31 is the maximal
essential extension of M as R-module. Hence we get MS == ir.

(4.7) Theorem. Any torsion free pseudo-injective R-module is injective.

Proof. Let M be any torsion free pseudo-injective R-module. Then the
Lemmas (4.2) and (4.5) implies that M is a torsion free pseudo-injective K,-
module. By using Lemmas (4.3) and (4.4), we get that Me,, is a torsion free
pseudo-injective K-module. Thus for any v € Me;, a € K and 2 a =0 implies
2 =0 or a= 0. Now we show that e, as a divisible K-module. Let z € M ¢, ,
ac K, a%0, N= 2 K. The mapping o: N — M e, such that c(xabd)=xd
for every b e K is a K-monomorphism. It can be extended to a K-endomor-
phism #% of Me,. Let n(x) =y. Then ya =xn(zxa) =oxa) = Hence
Mey; is a torgion free divisible K-module. As K has D as its classical
right quotient ring, therefore by [6] (Theorem (3.3)), M ¢, is an injective K-
module.Thus M is an injective K,-module. By [7](Theorem (3.1)), M is a divisible
K,-module. As M is torsion free as well as divisible K ,-module, therefore M
can be made into an S-module. That gives MS = M. But by Lemma (4.6),
M = MS. Hence M is an injective R-module.
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