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Estimation of Errors for the Approximate Solution

of Differential Equations and their Systems. (%)

1. - Introduction.
In the numerical solution of injtial value problems

dy
=

f(x, y)
1)

T =y, Y=1UYo,

we are still far from possessing rigorous error estimation methods for the gen-
eral case [8]. For higher order differential equations and systems of differential
equations the situation is worse. It is our purpose to bring some substantial
improvements to these important problems.

We shall reach our goal through the use of pseudo-iterative formulas, which
are known to constitute a special class of RuxeE-Kurra formulas endowed
with an error estimating internal property ([5], [6], [7]). Subsequently, we
shall generalize our error estimation method by using Runee-Kurra formulas
which are no longer of pseudo-iterative type. However it is not necessary to
adopt this approach; once the main idea is grasped one can just as well start
directly with the use of Ruxge-Kurra formulas proper. We are merely follow-
ing the order with which various ideas occured to us.

Furthermore, we shall define the near-optimal stepsize and give a practical
rule for its determination. This will enable one to check or curb the truncation
as well as the round-off errors over an extended interval.

(*) Indirizzo: Department of Mathematics, Louisiana State TUniversity, New
Orleans, U.S.A..
(**) Ricevuto: 5-V-1968.
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Although we are not concerned directly with numerical quadratures, a by-
product of this work will be a new error estimation method for the former.
This method is as effective as the known error estimation methods for quad-
ratures, but as it will be seen it is far more practical.

Finally, we felt useful to start this investigation with a short critical survey
of a few of the most well-known methods or formulas dealing with errors in the
approximate solution of (1).

2. — A formula which is frequently mentioned in the literature is that of
BiesersAcH’s [2]. This formula provides rigorous upper-bounds for the use of
the classieal fourth order RuNGE-KuTTA formula

@) Val@o + 1) =4y + = [ko + 2k, + 2k, + K],

S

where

(Ko =k f(2, Yo)

| ks = hflwe + N, 4o+ ko).

Let y(x), Y, = y(x,), represent the exact solution of (1) and let

< MNts,

fe 0, FES# ‘ a7t

o Oy

with 0 <r<4and0s< 4.
Then BIEBERBACH’s formula is written

B) | 9@ + k) —Yulwo + B) | < MN (3.7 + 5.4 M +1.3 M2 - 0.017 I[2) 1.

It is seen that however rigorous this method may be, it is of little practical
value.

Assume now the function f in (1) exempt of y. In this case (2) reduces to
SiMPSON’s rule.
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For the latter we have a well known error formula which is:

~ 1 (hYs . _
@) v + 1Tt +1) = — g5 (3106,
or
. ~ Y
[9(@y + B) — yslw, + h) | = mf ()

In general f*(x) is not a constant function and z is unknown. Thus in
order to make the formula practical we write in the form:

~ h3
(5) | y(wo + ) —yulwo + 1) | 5o 8 = T,

where § = max | f*(z) |.
On the other hand (3) can be written now

(6) [ 9@, + 1) —Yo(my + b)| =< 8.7 HIF (1 + positive terms) = T,

where H = max | f(z)]|, 1< r< 4.

Definitely H# = § and 3.7 = 10656/2880. It follows then from a comparison
between (5) and (6) that 7, >10656 T, that is BIEBERBACH’s bound for the
truncation error is at least 10656 times larger than that provided by Srvpson’s
ervor formula (5).

Ag far as LoTriN’s method is concerned [4], it provides a bound which is
only about 300 times larger than Smapson’s. However, LoTrIN’s bound is valid
only when & is sufficiently small.

All these are well known facts and they can be found, for instance, in [1]
(particularly p. 326).

The assumption that the function f in (1) is independent of y led us to some
kind of grading or scaling of Smpson’s, BIEBErRBACH'S and LoTxinN’s formulas
according to the accuracy of the approximations which they provide. We
shall apply this process to pseudo-iterative formulas one of which is:

~ 1
(7 a) Yaloo + 1) = o + 35 [14 ko + 35 Ty +162 %, +125 %],
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where
[ k=1 2o s Yo) Yulwg 4 ) =y, +
1 1 ~
ky = hflm + 5 by 9o + 3 ks ) Polttg + ) =y, 4+ T,
1 1
ky = h f(fl"o + 5 Iy o + i (ko + 7"’1))
(Th) -

~ 1
by =hfleg + Ty o—F +2 k), Yalmo ) =y, + G (leg -4~ deley -+ eg)

2 1
ky=h 7‘(9’30 + :571" Yo + 57 (Thky -+10 &y + 7‘”’3))

2 16
Ty =h f(mo + o hy Yo+ 10000 (28 ky—125 &y 4546 k,-+-54 793-3(8104) .

.

The above formula appears to be one of the best from the families of fifth
order pseudo-iterative formulas as established in [7]. And since we are in search
of everincreasing accuracies, we shall center our attention on this formula.

In the considered case where f is exempt of y, the fifth order formula (7 a)
and the imbedded fourth order in it, can be written:

(8) %js(wo + ) =9 + 0

= [JM% + 35 f(m, + h)

2 2

(9) &4(3/'0 + k) =y, + g [f(wo) 44 f(’vo + % L ) + (@ ‘Jr‘h):| .

The functions ¥, (¢, -+ h), ¥s (@ -~ k) and y(z, - k) have the following
TAYLOR series expansions:

v

~ R, »oy
?/4(970+7L):J0+hfo+§‘,‘fo‘+‘3—ny+ f —{——E’%h f“” !

~ 7212 7 "
Yo +h) =1y, +hf, + é“!fo fo fo T,fm 108000 ]Gf(s) .

m hs

h? 3
y(wo'{‘h):yo‘{"hfo +;]U+§L‘,fo 4,fo

(4) f(5)
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Then we find

~ hs —
10) Yo+ D) —Talao + 1) = — oo (0@,
~ ~ h? -
1) Ys(@o + h)— Y@y + ) = — 5330 ()
12 9 B) — §a(wy - h) = o)
(12) Y@ -+ h)—ys(wo + 1) = _IOSOOO'f &) -

It is seen that (10) is no other than (4). This is obvious, because in the case
under consideration the imbedded fourth order formula is reduced to SIMPSON’S
rule now represented by (9). Besides this, the right hand members of (10) and
(11) are alike except for the fact that the points # and z, may be different.
But these points belong to the same open interval, more precisely to the in-
tervals (@ — kv, @) OF (g, @, -+1R), 2 >0, according to whether we wish to prog-
ress to the left or right of ,.

In general, % is small and f*(x) is continuous. Under these conditions it
is reasonable to assume f¥(z) = f¥(#,). Then the combination of (10) and
(11) yields:

Yoo + B) —TFalwo + ) A Ylay + B) —Yalwo + 1)

In other words, the approximate value ¥,(z, + &), given by the imbedded
fourth order formula, agrees with the exact value y(w, + h) to the same accur-
acy as to which ¥(m, + %) and y,(x, -+ h) agree with each other. This is the
rule which we have stated earlier for the general case, that is relative to equation
(1), with an entirely different but less rigorous approach ([7], pp. 2-7). We
shall rediscover again this rule in the general case following a rigorous treat-
ment.

Thus the pseudo-iterative formula (7 a) offers for %y, the error estimate
¥s — ¥, which in the case of ¥’ = f(z) may almost coincide with the absolute
exact error. This error estimation process does not involve any derivatives

but it requires two additional evaluations of f(z), namely, f(wo +723—h) and
2
f(",vo —{— Ib‘ h ) .
On the other hand Smrson’s error formula (5) requires the analytical deriv-

ation of f*(x) which usually is not convenient especially in digital computer
operations. It requires also the determination of § = max| ()| which
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may well be quite involved. Furthermore, since S > If (@) |, the substitution
of the latter absolute value by 8, although a practical necessity, may substan-
tially reduce the effectiveness of the resulting formula (5).

As far as the accuracy of ¥; is concerned, combining (10) and (12) we find

Yoy + h) — Yyl + h)} i I

Y@y + B) — yulw, - h)|  37.5

1) I

JO@)

In ordinary cases f®(x)/4! and f®(x)/5! do not differ too much from each
other numerically. Thus, the preceding relation can be written

] Y@y 4 b)Y —ys(m + 1) l R 7‘)5 l Y(wy ~+ h) — Y@y + I) i .

This relation shows that under the precited suitable conditions the absol-
ute error in 7, is by a factor of 1/(7.5) larger than that in ¥ .

3. ~ Assume [ (z, y) € C°. Let as before ¥,(x, -+ h) be a 5-th order approx-
imation for y(z, + ) obtained through the use of the pseudo-iterative for-
mula (7 a).

The application of TAYLOR’s theorem gives

(13) Yz + h)_ajs(fvo + h) = 1® My(h),

where J(R), called a constant of proportionality, is actually a function of k.
The step-size & 5 0. From (13) we have

ylxy -+ h) — Fs(xy + h)

he

(14) = M),

Since the left side of (14) is a continuous function of h, so must be My(h).
Thus a small change in the step-size & will produce a small change in the value of
M(h).

Likewise relative to the imbedded 4-th order formula we can write
(15) Y@y + h) — Yaulm, + k) = B* M,(h),

where M ,(h)is a continuous function of h.
Let ¢, 0<<e¢ 21, be an arbitrarily selected constant near unity.
Replacing 7 by ¢k in (13) and (15) we obtain:

(16) Y(@o + ch) — y5(my -+ ch) = ¢® 1 My(ch) ,
amn Y(@o + ch) — Y y(m, -+ ch) == ¢® 15 M (ch) .
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The combination of (13) and (15) yields:
(18) A(h) = Y sy + 1) — Yul@o = k) = 5 M (h) — ke M,(h) .
Likewise the combination of (16) and (17) yields:

(19)  d(ch) = Ys(@, - ch) — Y(wy  ch) = ¢ h® M(ch) — ¢ h¢ M(ch) .
Let

X =15 M (h), Y = h® DM R).

Since M (h) is continuous, we know, for a given & > 0 there corresponds a
6 >0 such that

| My(h) — My(ch) | << & whenever |h—ch|<<d
or
| X— 0% Mych) | <WP e =¢ whenever h|e—1|<d.

Thus if ¢ is of the desired or accepted accuracy in our computations and
approximations, then for a chosen ¢ by taking h sufficiently small we can set:
X = I M,(ch). Likewise we can set ¥ = k¢ A (ch).

The substitution of X’s and Y's in (18) and (19) gives:

X — Y =d(h)
(20)
X —c®Y =d(ch).

This system of linear equations has as solution:

Y d(ch) — 8 d(h) B d(ch) — ¢3 d(h)
T T ed—e Tl —e)
that is
h) — ¢8 d(h — 5 d
oy e, N —ean L de e

¢’ (1 —¢) ¢ (l—y¢)
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The substitution from (21) into the equations (13), (15), (16) and (17)
yields:

~ __d(ck) — ¢ d(R)
(22 a) Y(@o + ) —ys(w + k) = Tel—o

~ d{ch) — 8 d(h)
(22 ) Y@ + h)— Yyl + b) = W )
(23 1) (o + o) —Fafmy + o) = TXHLZ 20T
@3 D) Yty -+ oh)— Falao + ch) = T =LAD)

I—e¢

It must be pointed out that the second equation in (20)is only approxim-
ately true. It follows then that the formulas (22 a, b) and (23 a, b) must also
be only approximately true. ‘

Taking this fact into consideration we can state the following:

Theorem 1. Let §y(w, + b) and Y@, -+ h) be the fourth and fifth order
approximations provided by o fifth ovder pseudo-iierative formula. Furthermore,
let:

A(h) = Ys(wy -+ h) ~——§4(a70 +h),
d(ch) = s(ws + ch) —Y(as -+ ch),

where ¢, 0<<ec =1, 458 « constant near wnity. Then, designating by
€@y, Yo3 T3 h) an approwimation for the true error

e(@y s Yo3 13 1) = Y@ + 1) — Gy + 1) (i==4, 5),
we have
(24 0) U, Y3 55 W) = ["ff) —~ d(h)} ,
(24 b) e (@, Yo; 45 h) = : _1_ c [d(ccsh) —e d(h)] ;
(25 a) (@, Vo3 B; ch) = 1—i—; [d(ch) — ¢5 A(R)]

~ 1
(25 b) e(@o, Yo3 4; ch) = T [d(h)— ¢® d(R)] .
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Henceforth, whenever the context is clear enough to avoid confusion, for
the sake of simplicity we shall designate the true and the estimated errors,
that is e(wy, %o; i; h) and €(wy, ¥o; 15 h), i =4, 5, either by e h) and &,(h)
or by e,(z,) and ¢,(x,) or merely by ¢, and ¢, , respectively.

4. — For the sake of convenience let us agree to progress to the right of
the initial point (w,, ¥,).
Let P designate the point (x, 0) and let Q(z,, 0) and R(z,, 0) be two dis-
tinet points on the x-axis to the right of P.
Assume @, == »; == 2, + hand @, =: x, 4 ch. Then: b = z,— x, , ¢ch = 2,— x,.
Consequently,
—_— Ly — X,

L, — Ty
and 1—¢ = .
X, — X, Ly — X,

¢ ==

‘With this 7 and this ¢ the application of (24 a) gives:

%m~(ﬁ:ﬁYﬂ%)

~ X, — X, — & T, — & 5
(26)  Ty(m,) = Lo = | ) () — d(wy) |-
Xy~ Ly \¥ By — 2, Ly — Ty &y — Ty
Ly — By ) Xy— Xy

Agsume now that we choose #, =2, =, -~ h and z, = @, -+ ¢h. Then:
h = ©,— z, and ch = z,— x,. Consequently,
Ty — @y T, — B,

¢ == ——— and 1—c¢ = .
By — &y By — Ly

With this new % and new ¢ the application of (25 a) gives:

o () — (:::q — 9;0)6 ()

X, By x, — &,

?s(mq) at

X, — 2,

(27) Ty — &,
L, = & X, — Ty |8

=2 =2 [( ? “) d(w,) — (Z(mq)] .
wy — x| \o, —

It is seen that (26) and (27) are identical. In other words the formulas
(24 a) and (25 a) provide the same error estimate to ¢; at z,. We shall say that
the formulas (24 a) and (25 a) are equivalent.

In like manner we can show that (24 b) and (25 b) are equivalent.

Calling @, -+ % and =z, +- ¢k the point of approximation and the auxiliary
point of approximation, respectively, these results can be stated as follows:

.
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Theorem II. Leta,and x, be two points in a vight (or left) neighborhood
of @y . Take one of these two points as the point of appromimation and the other as
the auxiliary point of approximation. Determine with the appropriate formulas
of Theorem I, ¢,(h) and e, (ch), i = 4, 5. Interchange the vole of these points,
that is, consider now as the point of approvimation the former aumiliary point of
approwimation. Find e ') and ¢(c¢'h), i = 4,5, where ¢’ and I are the new ¢
and new h. Then we have:

ey(h) ="e,(c'h'), € (ch) = e h'), i=4, 5.

Let us illustrate this error estimation method with the initial value problem
([7], pp. 37-48):

dy 2y

diw = | ) Ty == 0, Yg = 1 .

For h=2-n n=75,4,3,2,1, 0, the results are summarized in the following
Tables 1-6.

TABLE 1 TABLE 2

y =1.063 476 562 500 000 y =1.128 906 250 000

75=1.063 476 562 400 801 75=1.128 906 244 065

7,=1.063 476 555 495 786 7,=1.128 906 038 999

d(h) =y~ 7,=0.000 000 006 905 014 d(h) =g 7,=0.000 000 205 066

e; =1y —7;==0.000 000 000 099 199 e; ==y — 7;=0.000 000 005 934

¢ 25(h), k= 0.031 250 ¢ 25(h), Rk = 0.062 500

0.5 0.000 000 000 548 966 0.5 0.000 000 031 789
0.6 0.0600 000 000 540 766 0.6 0.000 000 031 457
0.7 0.000 000 000 535 111 0.7 0.000 000 031 139
0.8 0.000 000 000 530 687 0.8 0.000 000 030 831
0.9 0.000 000 000 526 928 0.9 0.000 000 030 530
1.1 0.000 000 000 520 449 1.1 0.000 000 029 947
1.2 0.000 000 000 517 507 1.2 0.000 000 029 663
1.3 0.000 000 000 514 685 1.3 0.000 000 029 384
1.4 0.000 000 000 511 955 1.4 0.000 000 029110
1.5 0.000 000 000 509 297 1.5 0.000 000 028 839
1.6 6.000 000 000 506 695 1.6 0.000 000 028 574
1.7 0.000 000 000 504 142 1.7 0.000 000 028 312
1.8 0.000 000 000 501 631 1.8 0.000 000 028 054
1.9 0.000 000 000 499 156 1.9 0.000 000 027 800
2.0 0.000 000 000 496 714 2.0 0.000 000 027 550




[1i]

d(h

ESTIMATION OF

TaBLe 3
y =l
?75:"“1
Yy=1

ERRORS TFOR THE

.265 625 000 000
.265 624 673 166
.265 618 992 695

) =27 - ¥4 =0.000 005 (80 471

es =y —15==0.000 000 326 833

¢ es(h), R = 0.125 000
0.5 0.000 001 763 256
0.6 0.000 001 729 452
0.7 0.000 001 696 733
0.8 0.000 001 665 036
0.9 0.000 001 634 310
1.1 0.000 001 575 602

2 0.000 001 547 545

| G e S S T ]
=1 Oy O o

< 0w

d(h) _ﬁq/
€; =Y —

0.000 001 520 306
0.000 001 493 853
0.000 001 468 156
0.000 001 443 185
0.000 001 418 913
0.000 001 395 313
0.000 001 372 361

0.000 001 3

TABLE §

50 033

y ==2.250 000 000
7:=2.249 393 939
71=2.246 666 666
54 =0.002 727 273
75 =0.000 606 060

e5(h),

h = 0.500 000

1.7

0.003 414 191
0.003 184 628
0.002 978 887
0.002 793 782
0.002 626 641

0.002 337 564
0.002 212 080
0.002 097 354
0.001 992 182
0.001 895 522
0.001 806 470
0.001 724 239
0.001 648 139
0.001 577 569
0.001 511 995

APPROXIMATE

TABLIL

SOLUTION ...

4

.562 500 000
562 484 253

562 345 679

y =1
J»—»l
yrwl.

A(h) =757, =0.000 138 574
0=y —J5=0.000 015 747

¢ E5(h),

h = 0.250 000

119

cooo0
[S=Tv's I B e rTiw 1}

0.000 086 402
0.000 083 241
0.000 080 265
0.000 077 459
0.000 074 810

1.1 0.000 069 937
1.2 0.000 067 694
1.3 0.000 065 567
1.4 0.000 063 549
1.5 0.000 061 632
1.6 0.000 059 809
1.7 0.000 058 074
1.8 0.000 056 423
1.9 0.000 054 848
2.0 0.000 053 346
TAaBLE 6
¥ =3.999 999 999
75==3.983 333 334
Ty=3.944 444 444
(h) =7 s~ 7,=0.038 888 890
es=y — 5 =0.016 666 665
¢ e5(h), h = 1.000 000
0.5 0.096 767
0.6 0.085 566
0.7 0.076 279
0.8 0.068 498
0.9 0.061 914
1.1 0.051 463
1.2 0.047 275
1.3 0.043 623
1.4 0.040 418
1.5 0.037 589
1.6 0.035 079
1.7 0.082 842
1.8 0.030 838
1.9 0.029 036
2.0 0.027 409
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Ip these investigated examples with ¢ = 0.5-2.0, ¢ 21, as shown in the

Tables 1-6, the best results are always obtained with ¢ == 2.0. In this case the

formula (24 a) reduces to

d2h)

B

(28) ¢5(h) = d(h) —

The introduction of additional decimal figures to ¢ does not in general
appear to affect noticeably the value of e,. This can be attributed mainly to
round-off errors. These errors are inherited from ¥4(%), ¥4(h), 75(ch) and ¥.(ch),
and are also originated by the error estimation formulas proper.

Indeed, the closer ¢ is to unity the closer M (ch) is to I 5(h), but also the
larger the numerical value of the factor 1/(1 — ¢) in (24 a, b) and (25 a, b) bec-
omes.

Thus if ¢ =2, 1/1—¢) =—1, but if ¢ =0.999 then 1/(1— ¢) = 1000.

It follows that with the latter value of ¢, the round-off errors present in the
bracket in formulas (24 a, b) and (25 a, b) will automatically be magnified a
thousandfold. Thus by taking ¢ closer to unity the gain resulting from the in-
creased tendency of M (k) and 3 ,(h) to behave like constant functions may
well be offset by this magnification of round-off errors. And this can be verif-
ied experimentally. Some of our experimental results are condensed in the Table
7, which can be considered as a complement of Table 1, the step-size being
the same in both of them.

TABLE 7

y =1.063 476 562 500 000
5=1.063 476 562 400 801
7,—=1.063 476 555 495 786

A(h) =Y 5y =

0.000 000 006 905 014

es=y - J5=0.000 000 000 099 199

¢

es(h), b = 0.031 250

0.999 999 1
0.999 999 2
0.999 999 3
0.999 9994
0.999 999 5
0.999 999 6
0.999 999 7
0.999 999 8
0.999 999 9

1.000 000 1
1.000 000 2
1.000 000 3
1.000 000 4
1.000 000 5
1.000 000 6
1.000 000 7
1.000 000 8
1.000 000 9

1.000 001 0
2.000 0000

0.000 000 000 601 532
0.000 000 000 663 218
0.000 000 000 742 527
0.000 000 000 663 231
0.000 000 000 552 215
0.000 000 000 663 244
0.000 000 000 848 288
0.000 000 001 218 370
0.000 000 001 218 376

0.000 000 000 108 166
0.000 000 000 108173
0.000 000 000 108 180
0.000 000 000 385 742
0.000 000 000 330 237
0.000 000 000 293 237
0.000 000 000 425 412
0.000 000 000 385 768
0.000 000 000 354 936

0.000 000 000 441 293
0.000 000 000 496 714
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It can be seen from this table that, contrary to one’s expectations, the two
values ¢ =1 -+ 107, do not generate values for ¢, which are close to each
other.

Indeed, with ¢ =1 + 1077 = 1.000 600 1 we obtain a better than 10-de-
cimal figure approximation for e,. However, with the other wvalue, 1. e.,
¢=0.999 999 9, the obtained approximation is correct to eight decimal figures
only. As ¢ increases with equal increments of 1077, the corresponding values
of ¢; show fluctuations which can be attributed only to round-off errors. Taking
¢ very close to unity is a hazardous undertaking since, as pointed out before and
now experimentally verified, we do not necessarily do any better than with
¢ = 2, unless the round-off errors in ¥ (h), ¥4(h), ¥s(ch) and ¥,(ch) are made
negligible. This can be achieved either by adding more decimals to our calculat-
ions or taking smaller stepsize. The first solution does not present any particular
difficulty but is subject to the limitations of the available computer. The sec-
ond approach will be treated in the next section.

5. — Suppose that for some step-size »/, d(b') =0 but d(#'/2) =0. We
then can write: d(h'/2%) =0 (i=1, 2, ..).
Consider on the x-axis the four consecutive points

h' » »
Qzy -0’y 0), R(wo + 5 0)’ S(xo + ik 0) and T(a’o -+ él“y 0) .

With the pair of points @ and R and c¢= 2, that is considering R as the point

d') o
TR
On the other hand, with the pair of points R and 8 and ¢ =1/2, at the same point

Moo~
of approximation, the formula (24 a) gives at © = x, + §L~ , es(h)2) =—

n ~
T =z, + 21 the formula (24 a) yields e (A'/2) = 0.

Had the round-off errors been negligible and had (24 a, b), (25 a, b) been
. . ~ h'
exact formulas, we would not get two distinet values for e, at & = x, +2i .

However, with either pair of points £ and § or § and T the formula (24 a)

I ~ ~
gives at # = xy -+ i— the same value for e¢;; more precisely, e;(7//4) = 0.

This ideal outcome can not be attributed to coincidence. Indeed, starting
from this point x, 4+ 22 %' at all consecutive points x,+2-"h' (=3, 4,...)
the same ideal situation will prevail, that is, we shall have €52~ 1) =0
(=3, 4, ...).



122 D. SARAFYAN [14]

We may thus consider the step-size b = I'/4 as being sufficiently small to
assume the variations of M (k)’s and the round-off errors arising from the use of
pseudo-iterative formula (7 a) and the trunction errors as negligible. And thus
truly now ¢;(h//4) = 0. Tt follows that with the number of decimal digits ret-
ained in our numerals (and calculations) we finally have the ideal result of

Us(@ -+ h) = y(z, -+ I).

The round-off errors and the truncation errors, as well as the errors origin-
ating from the formulas (24 a, b), start to become negligible with the use of
this ideal step-size, b = A'/4. This will be refered to as the near optimal step-
size and will be designated by %°. Thus we can announce the following:

h
Definition. If for some R, dA(h) 50 but (l(é): 0, then we shall refer
I . .
to I = 1% the near-opiimal step-size,

The new point thus obtained, namely Pl(% RO, Yl + 1) is an exact
point just like Po(a, #,). Therefore, departing from P, as a new but exact
initial point and repeating the process of finding a near-optimal step-size we
determine another exact point P, and so on. However, one will find out that in
general the near-optimal step-sizes behave like a constant over some small
interval; and that after some j applications of (7 a), at the end of this interval
we still have y4(x, -+ j 1) = y(@, + § 1°).

In particular, h° the near-optimal step-size found at the start, can be used
for the determination of the p pivotal exact points necessary for the starting
of any predictor-corrector process.

As an illustrative example, let us consider again the initial value problem
given earlier on page 118, When % = 0.00781250 we find d(h) = 101t and
d (hf2) = 0. Thus k° = h/4d = 0.001953125.

Indeed, with this near-optimal step-size, after 512 consecutive applications
of (7 a) we find y,(1) = y(1) = 4.000 000 000 00; that is, the exact value to 11
decimal figures.

The computed results are listed in the Table 8 which is self-explanatory.

In any box of the second and third column of this table are listed consecut-
ively y(h), ¥s(h), ¥a(h) and y(1), 75(1) and 7,(1), respectively.
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h

TasrLe 8

?/(h), ?75(71)9 ,774(h)

y), g5, F)
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1.000 000 000 00

4.000 000 000 00
3.983 333 334 55
3.944 444 444 44

4.000 000 000 00
3.983 333 334 55
3.944 444 444 44

0.500 000 000 00

2.250 000 000 00
2.249 393 939 69
2.246 666 666 67

4.000 000 000 00
3.998 755 918 63
3.997 647 392 81

0.250 000 000 00

1.562 500 000 00
1.562 484 253 03
1.562 345 679 01

4.000 000 000 00
3.999 939 840 97
3.999 907 257 84

0,125 000 000 00

1.265 625 000 00
1.265 624 673 17
1.265 618 992 70

4.000 000 000 00
3.999 997 697 98
3.999 996 712 21

0.062 500 000 00

1.128 906 250 00
1.128 906 244 07
1.128 906 039 00

4.000 000 000 00
3.999 999 921 12
3.999 999 890 81

0.031 250 000 00

1.063 476 562 50
1.063 476 562 40
1.063 476 555 50

4.000 000 000 00
3.999 999 997 49
3.999 999 996 55

0.015 625 000 00

0.007 812 500 00

1.031 494 140 63
1.031 494 140762
1.031 494 140 40

4.000 000 000 00
3.999 999 999 95
3.999 999 999 92

1.015 686 035 16
1,015 686 035 16
1.015 686 035 15

4.000 000 000 00
4.000 000 000 02
4.000 000 000 01

0.003 906 250 00

hy =

0.001 953 125 00

4.000 000 000 00
4.000 000 000 01
4.000 000 000 01

1.003 910 064 70

1.003 910 064 70
1.003 910 064 70

4.000 000 000 00

4.000 000 000 00
4.000 000 000 00

0.000 976 562 50

1.001 954 078 67
1.001 954 078 67
1.001 954 078 67

0.000 488 281 25

1.000 976 800 92
1.000 976 800 92
1.000 976 800 92

4.000 000 000 00
4.000 000 000 00
4.000 000 000 00

4.000 000 000 00
4.000 000 000 00
4.000 000 000 00
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6 — The application of TAYLOR’s theorem to d(#) gives
A(l) = Ys(wo + h) —Ys(we + h) = MBS,
It is seen that d(h) decreases with decreasing b and that d(h) -0 ash —0.

Assume now that for some step-size &, the approximate values ¥y(z, + h)
and ¥ @, - k) have been computed, the calculations being carried out to p
decimal figures.

Let E designate the tolerated maximum absolute error.

Set

B =|Ys(@ + b)—Falwo + 1) | .

Then |d(ch)|<H, ¢<<1. Since all errors smaller than ¥ are negligible,
it follows from (24 a, b) that ¢,(h) = ¢,(k) = 0, that is, y(z, -+ ) = yYs(zy + )
= ¥,(@, 4 h), approximately, and with a tolerance of E. We have thus redis-
covered again the familiar rule, namely: the approximation Ys(w, + h) agrees
with y(@, + h) to the same accuracy as to which ¥(w, + k) and Y@, + b)
agree with each other.

A modified but more practical version of this rule is the following:

Rule of thumb. Assume that for some step-size h, the approximai-
ions Ys(mo + h) and Y2, - h) have their integral parts and their leading n
decimal digits coinciding, the calculations being carried out io p, p >n, decimal
figures. Then Ys(w, + h) and Yz, + h) also agree up to their n-th decimal
digit with y(z, + h).

It must be pointed out that since d(h) = O(h*) and d(ch) = O(1®), the
formula (24 a) indicates 55(h) = O(h®). On the other hand, since e;(h)= O(h%),
it follows then that |e; (k)| > es(k) | .

This rapid and simple error estimation method based on this rule does not
require any additional substitution except that necessary for the evaluation
of Ys(x, + h); the other more accurate estimation method based upon formula
(24 a) necessitates five additional substitutions.

7. — The formulas (24 a, b) and the related error estimation method can be
extended easily to systems of differential equations and differential equations
of order » > 2.

For instance, consider the system ([7], p. 44-50)

dy
dos
dz
da

= fl(wy Y, ?)

= Az, Y, ?)
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subject to the condition: w(wz,) = v,, 2(x,) = 2,.
The corresponding pseudo-iterative formulas are:
T g T

(29)

where

([~ 1
Yslto + 1) =gy -+ o (14 &} -+ 35 K, + 162 K -+ 125 &)

336
~ 1
Yal@ -+ h) =g, + G (ky + 4 k; + k),
~ 1
( 25wy + ) = 9y, + 56 (14 &2 - 35 k: + 162 k2 - 125 )

~ 1
2y(@5 + h) =y, -+ 5 (k2 + 4 k: + k3) ,

kg = I f(wq , ¥, y %)

L 7”}2; 275f2<3707 Yoy zo)a

=
-

1 1 1
ot :h]‘l(mo +—2-7b, Yo ~:—§k,‘,, 2 -+ —703)
1),

1 1 1 5
ky = ]I’fl(mo -+ 3 by o + i (7‘7; + k}); % + 2(7‘;(2; + k;))

]

[

1 1
kf:hf?(:co —;—Eh, yo—{—ék},, 2 +

K

[

1 1 1
:hfz(wo +§7L’ ?/0+1(k(1)+701): 2 ‘:’"’4‘:(7"42) ‘:"75?))7

by =hf'(zg +h, yo— ki + 2R, g—k; + 2K

3

=

s =L@y + oy yo— + 2k, 2—k 4+ 2,

2 1 1
B=hf (mo+ 5T Yot g7 (TR +10 B4R, 20t oo (TH + 107c§+k§>)

2 1 1
B=h fz(%+ 5l Yok 57 (TR+10 B4, 20+ oo (TR -+ 10k1+k3))_,
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2 16
KL =1 fl(mo o —h, Y + 1-6(—)10?) (28 I} —125 k! + 546 &, -+ 54 kL — 378 k}) ,

16 s » = 2 Ivd
% + Tooog (28 K5 —125 K + 546 &% + 54 45 — 378 kj))

2
k2 =h f‘-’(fvo 4+ m Ty Yo + 75000 (28 &y — 125 I} + 546 kY - 54 kI — 378 k}),

16
Ly —
® 7 10000

(28 k2 —125 & + 546 k2 - 54 k2 — 378 ki))]

The error estimation formulas (24 a, b) become now:

Rés(?/’ h) = [ . Ck)—— Ay, h) )

7/, ch)
eq(y, b) = — —od(y, h) ?

d(z, ch)

es(z, h) = hﬂ

-

[d(z ch) ]

ealz, ) = d(z, )|,
where now
ey, h) ~ ey, ) =y(@, + h)— Y@, + I) (i =4, b)
’Ez'(za h) s ez, k) = 2(m, + 7L)—-5i(w0 -+ k) (¢t =4, b),

Ay, b) = ys(h) — b,

d(z, ) =zh) —Z(h),

d(y, oh) = Fs(ch) — Fa(ch) ,

dlz, ch) = z5(ch) — y4(ch) .
As far as differential equations of order » > 2 or systems of higher order
differential equations are concerned, they can be written as a system of first

order differential equations to which pseudo-iterative formulas apply. The
reader in each case can readily write the associated error formulas as above.
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It must be mentioned that the formulas (24 a, b), (28) and (29) and the rel-
ated error estimation method are not restricted to pseudo-iterative formulas.

Any two formulas of fourth and fifth order can be used instead. But this will
require at least seven substitutions instead of six.
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Résumé.

Dans wn article antériewr Uautewr a établi les formules pseudo-iiératives de Rumnge-
Kutta. Ces formules donnent non seulement des approwimations aw cinguiéme ordre,
mats encore des estimations des erreurs sans nécessiier de nouvelles évaluations de la fon-
ction.

Ici on développe une méthode qui améliore les résulials précédents. Celle nouvelle mé-
thode pour estimer les erreurs est géneralisée ¢ touls les types de formules de Runge-
Kutta et étendue aussi auw systémes d’équaiions différentielles ordinaires.






