B. D. MALVIYA (*)

Some Theorems on Operators. (**)

A bounded operator T defined on a Hilbert space H is said to be hyponormal if $\|T^*x\| \le \|Tx\|$ for any $x \in H$. This definition has also an equivalent form: We say that the operator T is hyponormal if $T^*T > TT^*$. The notion of hyponormality was introduced by Halmos [2].

A closed linear maniforld in the Hilbert space is called a subspace of H. The set of all complex numbers λ for which $(T - \lambda I)^{-1}$ does not exist is called the spectrum of T and is denoted by $\sigma(T)$.

An operator T defined on a Hilbert space H is said to be compact (completely continuous) if it maps every bounded set into a compact set. In other words an operator T is called completely continuous if there exists a sequence of elements $x_n \in H$ ($||x_n|| = 1$) such that $\{Tx_n\}$ contains a convergent subsequence. Recently another class of operators known as completely continuous operators have been in prominence. The first fundamental result concerning completely continuous hyponormal operators was proved by Andô [1]. He proved inter allia that a completely continuous hyponormal operator is necessarily normal.

Here in this Note we prove certain results concerning hyponormal operators.

Theorem 1. Let T be a hyponormal operator defined on a Hilbert space H and let M be a closed subspace of H such that

$$M = \{x: Tx = \lambda x, x \neq \emptyset\},$$

then the subspace M will be spanned by eigen vectors of T.

^(*) Indirizzo: Department of Mathematics, University of Allahabad, Allahabad, India.

^(**) Ricevuto: 19-X-1967.

Proof. Let there be a vector Φ not orthogonal to M. We may express it as $\Phi = \Phi_1 + \Phi_2$, where $\Phi_1 = \varnothing \in M$ and $\Phi_2 \in M^{\perp}$. Hence $\lambda \Phi = \lambda \Phi_1 + \lambda \Phi_2 = T\Phi = T\Phi_1 + T\Phi_2$ and so $T\Phi_1 - \lambda \Phi_1 = \lambda \Phi_2 - T\Phi_2$. It is easily verified that M is invariant under T. Now, on account of invariant property of T, we have $T\Phi_1 \in M$ and $T\Phi_2 \in M^{\perp}$. Now only the null element is common between M and M^{\perp} . Hence $T\Phi_1 = \lambda \Phi_1$ where $\Phi_1 \neq \varnothing$. Hence the result follows from Theorem 2 (cf. [3]).

Theorem 2. Let T be a hyponormal operator and M a set such that

$$M = \{x: \| Tx\| = \| T^*x\|, Tx = \lambda_i x, x \in H \},$$

where λ_1 , λ_2 , ..., λ_n are the eigen values of T. Further let $\sum_{i=1}^{\infty} \lambda_i^n \omega_i = 0$ and $\sum_{i=1}^{\infty} |\omega_i| < \infty$ imply that $\omega_1 = \omega_2 = ... = 0$. Then M is generated by eigen vectors of T.

Proof. Under the hypothesis of the Theorem, it is easy to see that M is a closed subspace invariant under T and T*. It is also known that the eigenspaces corresponding to different eigenvalues are orthogonal. So any $x \in M$ may be expressed as $x = \sum_{i=1}^{\infty} x_i$ where $x_i \in N_{\mathbf{T}}(\lambda_i) = \{x_i \colon \mathrm{T} x_i = \lambda_i x_i\}$. Let $y^{\perp} M$, we write $y = \sum_{i=1}^{\infty} \eta_i$ and $\eta_i \in N_{\mathbf{T}}(\lambda_i)$. Since $\mathrm{T}^n x \in M$, $n \geqslant 0$, we have

$$(\mathbf{T}^n x, y) = \sum_{i=1}^{\infty} \lambda_i^n (\eta_i, x_i) = 0.$$

Putting $(\eta_i, x_i) = \omega_i$, we have $\sum_{i=j}^{\infty} \lambda_j^n \omega_i = 0$ where $n \geqslant 0$. Now since

$$\sum_{i=1}^{\infty} \parallel x_i \parallel^2 < \infty , \qquad \qquad \sum_{i=1}^{\infty} \parallel \eta_i \parallel^2 < \infty ,$$

we further have $\sum_{i=1}^{\infty} |\omega_i| < \infty$. So it follows that $(y, x_i) = 0$ for $i = 1, 2, \ldots$. It means that every $x_i \in M$ and the conclusion of the theorem follows.

Theorem 3. Let T be a hyponormal operator and let

$$M_i = \{x: x \in H, Tx = \lambda_i x\}.$$

where λ_1 , λ_2 , ... are eigenvalues of T. Then $\sigma(T) = \cup \sigma(T_{|M_i})$, where $T_{|M_i}$ denotes the restriction of T to M_i .

Proof. Now M_i 's are invariant under T. The subspaces M_i , M_j are mutually orthogonal for $i \neq j$. The restriction of T to M_i , denoted by $\mathbf{T}_{|M_i}$ is the mapping $\mathbf{T}_{|M_i}$: $M_i \to M_i$ defined by $\mathbf{T}_{|M_i} x = \mathbf{T} x$. Let $\lambda \in \mathcal{C} \cup \sigma(\mathbf{T}_{|M_i})$.

Then, supposing $T_{\lambda} = T - \lambda I$, we have

$$\parallel \mathbf{T}_{\lambda \mid \mathbf{M}_1} \, x_1 \rVert = \lVert \; \mathbf{T} x_1 \rVert \geqslant c \lVert \; x_1 \rVert, \qquad \qquad \parallel \mathbf{T}_{\lambda \mid \mathbf{M}_2} \, x_2 \rVert = \lVert \; \mathbf{T} x_2 \rVert \geqslant c \lVert \; x_2 \rVert$$

and so on. Any $x \in H$ may be expressed in the form $x = \sum_{i=1}^{\infty} x_i$ where $x_i \in M_i$ (i = 1, 2, ...). Then

$$\| \mathbf{T}_{\lambda} x \| = \| \sum_{i=1}^{\infty} \mathbf{T}_{\lambda | M_i} x_i \| = \| \sum_{i=1}^{\infty} \mathbf{T} x_i \| \geqslant c (\sum_{i=1}^{\infty} \| x_i \|^2)^{1/2} = c \| x \|.$$

But this is indicative of the fact that $\lambda \in \sigma(T)$. Hence the Theorem is proved.

It is known that if T is completely continuous then T* is also completely continuous. But the converse relationship is not known. In the theorem given below we have pointed out that under the hyponormality of T* and complete continuity of T*, T is completely continuous. We state this elementary result in the form of

Theorem 4. If T* is completely continuous hyponormal operator, then T is completely continuous.

Proof. By definition of hyponormality, we have

$$\| T(x_n - x_m) \| \le \| T^*(x_n - x_m) \| \to 0$$
 $(m, n \to \infty),$

where $\{x_n\}$ is any bounded sequence of elements $x_n \in H$, such that $||x_n|| = 1$.

Theorem 5. If T is a hyponormal operator and λ an isolated point in the spectrum of T, then λ belongs to the point spectrum of T.

Proof. Since λ is an isolated point in the spectrum of T, we can find a circle with centre λ such that $|\mu - \lambda| = r$ is free from the points of $\sigma(T)$

except the point λ which is inside the circle. Then

$$P = \frac{1}{2\pi i} \int_{|\mu-\lambda| = r} (\mathbf{T} - \mu \mathbf{I})^{-1} d\mu$$

is a projection which commutes with T and

$$\|P\| \leqslant \frac{1}{2\pi} \int \parallel \mathbf{T} - \mu \mathbf{I} \parallel^{-1} \mathrm{d}\mu \leqslant \frac{1}{2\pi} \, 2\pi \ r \, \frac{1}{r} = 1.$$

Thus P is self-adjoint. Now for $x \in PH$, we have

$$\| (\mathbf{T} - \lambda \mathbf{I}) x \| = \left\| \frac{1}{2\pi i} \int (\mu - \lambda) (\mathbf{T} - \lambda \mathbf{I})^{-1} x \, \mathrm{d} \mu \, \right\| \leqslant r \ .$$

Letting $r \to 0$, we have $Tx = \lambda x$. It proves our assertion. It is also proved by STAMPFLI [4].

References.

- [1] T. Andô, On hyponormal operators, Proc. Amer. Math. Soc. 14 (1963), 290-291.
- [2] P. R. Halmos, Normal dilations and extensions of operators, Summa Brasil. Math. 2 (1950), 124-134.
- [3] B. D. Malviya, On hyponormal operators, Riv. Mat. Univ. Parma (2) 10 (1969), 9-12.
- [4] J. G. Stampfli, Hyponormal operators, Pacific J. Math. 12 (1962), 1453-1458.

* * *