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Basic Sets of Polynomials

for a Generalized Heat Equation and its Iterates. (*%

1. - Introduction.

Basic sets of polynomial solutions for the wave and LAPLACE’S equations
and their iterates have been given in a number of papers [1], [2], [3], [4], [5], 8],
utilizing various techniques. Some of these results, particularly those of (5]
and [6], proved useful in the GRAM-ScEMIDT orthonormalization technique
initiated by DAvis and RABINOWITZ [7] for obtaining approximate solutions
of certain boundary value problems. In this paper we propose to develop
basic sets of polynomial solutions for the partial differential equations

1) Liu = (D, — >D)ru=0 (k=1,2,..),
i=1
where
0 o2 o; O
Do=gp  Di=gm+ oo

with «,>0 ({=1,2,...,m). When all the o, are zero, the differential oper-
ator I in (1) reduces to the heat operator
n o2
H=D,—4, 4=73

5 .
i=1 0w;

Our procedure here is to first establish a basic set of polynomials for the
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heat equation
(2) Hy =u;,— Au =0

and its iterates, and then adopt the method employedgby Mizes and Youxa [8]
to develop a basic set for equation (1).

2. - Basic set for H*a = 0 (k = 1, 2,...).

‘We state our result as

Theorem 1. Let n>1 and k>1 be given integers andilet ay, ..., ap, s be
nonnegative integers satisfying the condition

(3) @y oo+ Gy =n—2s,

with s<k—1 if n>2k and s<[n/2] if n<<2k. Then the set P consisting of
polynomials homogeneous of degree m in @, , ..., ®, , 2,

[tn—23)/2] ti+s

(4) Py apsl@y t) = 3 Ay amm) R
i=0 .

L= (By1y ...y &w), forms a basic set for the equation
(5) Hey =D, — A)ru=0.

We shall need the following Lemma which can be easily established by
induection.

Lemma 1. If u(w,t) satisfies equation (2), then (@, t) = t*Tu(w, t) sat-
isfies equation () for k=1, 2, ....

We shall prove the Theorem by showing that the set P has correct number
of linearly independent polynomial solutions of equation (5). That all the
polynomials given by (4) satisfy equation (5) is readily verified. In fact, this
follows immediately in the case corresponding to s= 0 since the polynomials

[n/2] t
(6) Pl apo (@5 1) = 3 A ... aom) i

i=0

are easily seen to satisfy equation (2) by direct differentiation with the obser-
vation that 4i(@{ ... #lm) = 0 whenever j> [n/2]. In the general case s> 0,
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we observe that the polynomials (4) can be written in the form

P (@, 0) =P 7" (@,1).

@y aen S -y

Since the polynomials P(’j“jff,mo((v, t) satisfy the heat equation, it follows by
Lemma 1 that all the polynomials (4) satisfy equation (3).

Next we show that the set P is correctly numbered. We observe that P
has as many linearly independent polynomials as there ave distinet ways of
choosing the integers a,, ..., a,, s satisfying the condition (3). Let n>2k and

suppose that

(7) ’U'(w7 t) - z ‘lirl...rmv ‘/B;‘ “E;Tznty

is a polynomial which is homogeneous of degree n in «, vees By, 12, The
summation in (7) is taken over all nonnegative integers »; and » such that
F1-+ oo -t 2y = n. Then every coefficient of # can be represented, except
for a constant factor, as

(8) A, e~ Al dim Diu,

where d,= ¢/¢z,, 1<i<m. If H"x = 0, then

k!

Dby ~ 3 ———— @ .., A% D,
kbt pd

where the summation is taken over all k&, and u such that &, ...+ k.- u==%k
with 0<u<k—1. Hence every derivative of the form given in (8) can be
written in such a way that D, occurs no more than % — 1 times. This means
that if the polynomial (7) satisfies equation (5), then all coefficients of « are
linear combination of the coefficients Agy.apsr Where a4+ .- @, 2s =n
and 0<s<k—1. Thus the set P is correctly numbered when n>2k.

In the case when n <2k, a basic set of polynomial solutions for equation
(8) could be chosen as simply the set consisting of the monomials TP .. wm S,
where a;+ ...+ @, - 25 =n. Since n—2s>0, it follows that 0<s<[1/2] and
so in this case, too, P is correctly numbered. Thus the Theorem is proved.

3. - Basic set for Lfu =0 (k=1,2,...).

We assume that in (1) at least one of the «; is not zero and observe that
any polynomial solution of equation (1) must be even in x, whenever o;> 0,
1<igm. The latter observation can be proved in similar manner as in [8].
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Without loss of generality we can assume ;= 0, 1<i<p, and o; >0,
P+ 1<jgm. Let T, denote the operator which replaces x}% by

1-3...(2s,— 1)
(14 o) o (28, — 1 + ay)

25,
%,

(25)) oo
bk Si¥ e

p+1<igm, and set T=T,, ... T,. We have

Theorem 2. Let n>1 and k>1 be given integers and let @y, ...y tyy oy
eey Ty 8 be monnegative integers such that

m

(9) Zpa,.,-—l— > 2r,=n—2s,

i=1 i=p+1
where s<k—1 if n>2k and s<[nf2] if n<<2k. Let

[tn—2s)/2] 15+
n

. — j 2 2 —
Brennlp Ty g Tm S ("U7 t) - ;‘2:0 AJ(m';x T w;v m,,rffl"‘ Cl,’m"m) ?! .

Then the set @ consisting of polynomials

(10) R

- € prrl‘.‘rms(m? )= TQ:, (z,t)

el T g Ty S

is a basic set for the equation (1).

Lemma 2. The differential operators L and H satisfy the propertics
LT =TH and L*T = TH?* for any integer k>1.

We see that D,T=TD,, D,T,=T,(2*/02%), and D,T;= T,;D,; whenever
i 5= j. Thus

P 2

02 m p 62 ut
LT — (Dt_z -3 Di) T (Dt_ma ) S Ty DTy Ty —

!
fe=1 i=p+1 x; Py

LR m 62 LA m o
=T (Dt~i§1 a—w,::)— igﬂ'l‘,,ﬂ T PR T, =T (Dt—g1 a—.*?)_?:g“ é}Zf:TH'
Repeated application of this result and the use of the associative property
(LT)H = L(TH) establishes the second part of the Lemma.

We now prove the Theorem. By Lemma 2 and Theorem 1, we see that
all the polynomials given by (10) satisfy equation (1). Hence we need only
verify that the set ¢ contains correct number of linearly independent polynomials
which are homogeneous of degree n.
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Let n>2Fk and suppose that

N N Y RO S IR
e by 1 e WP TR ",

(11) U@, ) = A

S b e Sp - 280 - 28, 29 = n, 0<p<<m—1, is a polynomial homo-
geneous of degree n in @y, ..., &, t'/* which is even in the variables @, ..., Zu.
Note that here we have already replaced each % by ", Then

i

(12) As, .. v~ (... dr Do D DY) u,

'Szltl}fl"' tm m

50 that if L*« = 0 there follows

Diw ~ 3 B, ., (A .. dJ»Dpy . DinD)u,

where the B’s are some constants and the summation is taken over all %; and s
such that k4 ...4 k,+ s=1F% with 0<s<k—1. Thus every derivative of
the form (12) can be written in such a way that D, occurs no more than % — 1
times. This implies that if L*u = 0, all coefficients of % are linear combina-
tion of the coefficients Aa,.apry,q.rys, Where a4 .- @pt+ 2950+ oo+ 20, =
=pn-~2s and 0<s<k—1. This shows that the set @ is correctly numbered
when n>2k.

That ¢ also contains correct number of elements when 1 < 2% follows
from the fact that the set of monomials 2% ...z%al[2+ ... #°= ¢*, where-
oot Gt 27500+ oo 20 =0 —28>0, constitutes a basic set of poly-
nomials solutions for equation (1). This estabilishes the Theorem.

4. - Remarks.

It is of interest to note that when m =1 the polynomial solution of
degree n of the one-dimensional heat equation %, .= 0 as given in (6)
reduces to

fnja} g2 1

13 Up(2, 1) = 0! —
(13) @0 =nl 3> o

This coincides with the heat polynomial defined in ([9], p. 222) as the coefficient
of z7/n! in the power series expansion

exp(zz + 122) = > u,(w, 1) I

n=40
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Further, we observe that each element of (6) can be factored as

PLo () =, (0, 1) o (@ ),

TP

where each u, ( ; ) is of the form (13) with n replaced by «,. Thus according
o ([10], pp. 390 -391) the polynomials (6) can also be generated as follows

m Nm 2m
e\plz Ti%; + t~1 z EP:. umf) & 2‘) lm' .
i1 e 0 e, ‘1 me
References.
[1] M. H. PrROTTER, Generalized spherical harmonies, Trans. Amer. Math. Soc. 63

(1948), 314-341.

[2] M. H. PROTIER, On a class of harmonic polynomials, Portugal Math. 10 (1951),
11-22.

[3] J. HowrvArH, Singular integral operators and spherical harmonics, Trans. Amer.
Math. Soe. 82 (1956), 52-63.

[4] J. Horviru, Basic sets of polynomial solutions for partial differential equations,
Proc. Amer. Math. Soc. 9 (1958), 569-575.

[5] E. P. Mices (Jr.) and E. Winriams, 4 basic set of homogeneous harmonic polyn-
omials in k wvariables, Proc. Amer. Math. Soe. 6 (1955), 191-194.

[61 E. P. Mres (Jr.) and L. WILL1aMS, Basic sels of polynomials for the iterated
Laplace and wave equations, Duke Math. J. 26 (1959), 35-40.

[7 P. J. Davis ana P. RaBiNowirz, Boundary value problems using the method
of orthonormalized particular solutions, Nat. Bur. Standards, Report No. 6951.

[8] E. P. MmEs (Jr.) and E. C. Youxe, Basic seis of polynomials for generalized
Beltrami and Buler-Poisson-Darboux equations and their ilerates,
Proc. Amer. Math. Soc. 18 (1967), 981-986.

[9] P. C. RosexBLoowm and D. V. WIDDER, Expansions in terms of heat polynomials
and associated functions, Trans. Amer. Math. Soc. 92 (1959), 220-266.

[10] D. V. WipbDERr, Series expansion of solutions of the heat equation in n dimen-
sions, Ann. Mat. Pura Appl. (4) 55 (1961), 389-409.

Summary.

Basic sets of polynomial solutions are developed for the heat equation and ils iterates.
The sets are then extended to from corresponding basic sets for class of generalized heat
equations and their iterates.



