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On a Correspondence Principle

in Thermo Linear Viscoelasticity. (*¥)

1. - Introduction.

A correspondence principle for dynamical problems in the theory of linear
viscoelasticity was first enunciated by LEE [4]. However, the thermal response
of the material was not included in the derivation of this principle, although
viscoelastic materials are affected considerably by temperature. The theory of
elasticity considers the effect of temperature and this has led to the study of
thermoelasticity. But the solutions to thermal-viscoelastic problems are more
difficult; this is due to the fact that the consititutive relations for viscoelastic
materials are of very complex type. STERNBERG [5] has formulated a corres-
pondence principle which obtains the solution of a quasi-static problem in
thermo linear viscoelasticity from that of & corresponding problem in thermo-
elasticity. The small deformations were assumed and the physical parameters
were also supposed to be independent of temperature. The present derivation
of the correspondence principle however extends to the dynamical problems.
The body force and the inertia terms are now included in the equation of motion.
The integral representation of the stress-strain relation has been used in the
present analysis.

An element of length I, subjected to a temperature difference 7 becomes
I; (14 aT), where o is the coefficient of thermal expansion of the viscoelastic
material. The strain &’ due to the free thermal expansion is thus equal to «Z'5;, .
The total strain ¢ can be thought to consist of the thermal strain & and the
viscoelastic strain &” produced by the resistence of the medium, i.e.

1) e=¢ -+ ¢&".

(*) Indirizzo: Department of Mathematics, The University of Alberta, Edmonton,
Alberta, Canada.
(**) Ricevuto: 13-1-1969.



112 V. P. MADAN [2]
2. - The constitutive relation and the equations of metion.
The strain &; in terms of the displacement components u, is

(2) & = & (w5 + 54) -

Equation of motion is

0%
oz’

(3) isg + Fi=p

where g is the density and ¥, is the body force. The strain ¢, of the viscoelastic
deformation is related to the stress o;; by the stress-strain relation

|2
) - do(t’) , ,]
& (t) = ED O'(t) —,j" T ‘l/)u(t —1 ) d?’r J'

-

or

t

(4) s(t) — ol = B;* { a(t) -%—fw Pt — 1) dt’} .
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-—ce

However if we use the following form for stress-strain relation

d v
o(t) = t) '—f i“(l (pu t—v ) a’ }

‘We obtain

(5) o(t) = B, { (e(t) — oTT) -—f(;—lt (e(t') —aX(V') I) pu(t—1) dt’}.

The temperature
T =T, 1),
I, = Youxa’s modulus,

. = Creep function



[3] ON A CORRESPONDENCE PRINCIPLE ... 113
and
@, = Relaxation function.

Thus the equations in the thermo viscoelasticity are (2), (3) and either (4)
or (5). The temperature 7' is assumed to be known; ordinarily it is determined
from the solution of FOURIER’S heat equation.

We introduce integral transforms to obtain the algebraic relations connecting
the transformed values of stress and strain. Multiplying the equations (4) and
(5) by ¢, integrating from t=0 to {= co and restricting attention to prob-
lems for which the solid is undisturbed prior to ¢ = 0, we have

(6) &(8) — o I T(s) = B [1 4 s pu(s)] o(s)
and
(7) o(8) = I, [1—s ()] [e(s) — o IT(5)]

where the convolution theorem is used to evaluate the integral transforms
of the integral terms. The equivalence of (6) and (7) implies the following rel-
ation between g, and p,:

(8) [1—s (}5“(6’)] [1 +s &,u(s)] —1

which is independent of the thermal response and is same as for the theory
of viscoelasticity; an equation due to Gross [2]. The above relation corélates
the creep and the relaxation behaviour of a viscoelastic solid. The relation
connecting the ultimate values of creep and relaxation functions may be obtained
by using an Abelian theorem and with the limit s — 0, giving [8]

(pu( Oo)
(9) Pu(00) = =g "

Rither of the forms (6) or (7) may be written as

(10) o(s) = I(s) [e(s) — o T T(s)]
where
(11) B(s) = B, [1—s@us)] = B, [1 -+ s p,(s)]".
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B, is a function of complex variable s. It may be regarded as giving a complete
specification of the viscoelastic properties of the solid. Also the LAPLACE trans-
form of the equation of motion (3) gives

(12) 0,,, + F, = 082 u,s)

the continuum is assumed initially at rest. If v, and v, are the creep functions
governing the shear and dilatational behaviour and u, % denote the shear mod-
ulus and bulk modulus respectively. Then the stress-strain relations (4) can
also be written as

1

de;(t
(13) Zue; =8y +f : ('{[(, ) w(t—t') dt’
and
13
1 il'(l'l
(14) 3k (&4 —3al)= 0y +f : (i]t’ ) Wt —1t) dt’,

— 0

where ¢,,/3 is the mean normal stress and &;,/3 is the mean extension and Gy
.y are stress and strain deviators respectively; so that

( Sy == Oy — % O Oy
(15) J

— 1
Cip = €55 7 & Oij -

Applying LAPLACE transformation to (13) and (14), we have

(16) 2 u Eﬁ = E,»,-(S) + 1—/)1(3) g‘z’i(s)
and
(17) 3 k (Eii—"gar-[’) = gll( ) + s 7/)‘)( ) Gzz( )

which give

(18)
[3 k (8 — 30T)] .

]—!—szp
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From (15) and (18), we get

- - 2 _ .
(19) gy 2 Hy €55 -+ (7"1 ey /'l'l) & Oy —3 by T 05,
where
()= u/(1 + s p,(s))
and
(20) y(s) = k(1 - s p,(s) .

It is easily seen that the equation in thermoelasticity corresponding to (19)

is of the form
24

(21) E{;‘: 2 Lt ;,:,'j _%“ (lﬁv—é /'[) Z,;,.., (Sﬁ— 3ka ;ﬁ (S,',- .

Hence it follows that in the Laprrace transform plane the components of the

stress for thermoviscoelastic problems are obtainable from those of the thermo-

elastic problems of same type by replacing & and p by ky(s) and p,(s) respectively.
Substituting o,; from (19) into (12), we obtain

— 1 — —
(22) [IAVARAES (7{1 e ;,ul) Us 50 + B — S koD = 082 ufs).
(22) can now be compared with the thermal equations in elasticity
_ 1 — - _ _
(23) JIAVARITAES (k -+ 3 ;1,) Uiz b Bi—3 kol = 05 uls).

The following conclusion can now be drawn:

« The LAPLACE transform of the solution of a thermo linear viscoelastic
problem can be obtained from the solution of the LAPLACE transform of the
equations giving the displacements in a thermoelastic problem with same boun-
dary and initial conditions, by replacing k and x by &, and g, respectively. »
The solution of the problem as such is then obtained by inverting the transforms.
The equations (23) are to be solved subject to the specified displacements u;
or tractions o; on the surface of the body. The effect of temperature change
T is equivalent to replacing the body force F; by F,— 3 k, « T,; and to substit-
uting o;- 3 k, o« T»; for the surface tractions in boundary conditions. The
additional term 3%; T «; being equivalent to a hydrostatic pressure.
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Abstract.

A correspordence principle for dynamical problems in the theory of thermo linear vis-
coclasticity has been established, which enables one to write the solution of a thermo-vis-
coelastic problem from the solution of an identical problem in thermo-elasticily. The consequen-
ces of the temperature variation on the thermal stresses and the body force are also observed.



