F. M. KHAN (*)

On $|\overline{N}, p_n|$ - Summability Factors of Infinite Series. (**)

1.1. – Let $\sum_{n=1}^{\infty} a_n$ be a given infinite series, with the sequence of partial sums $\{s_n\}$, and let $\{p_n\}$ be a sequence of real positive constants such that

$$P_n = \sum_{v=0}^n p_v.$$

We write

$$\bar{\sigma}_n^p = \frac{1}{P_n} \sum_{v=0}^n p_v \, s_v \,, \qquad \bar{t}_n^p = \frac{1}{P_n} \sum_{v=1}^n P_{v-1} \, a_v \,.$$

The series $\sum a_n$ is said to be absolutely summable $(\overline{\mathbb{N}}, p_n)$, or summable $|\overline{\mathbb{N}}, p_n|$, if $\overline{\sigma}_n^p \in \mathbb{B}.\mathbb{V}$. If we take $p_n = 1$ for all n, then it is known that $|\overline{\mathbb{N}}, 1| \sim \sim |\mathbb{C}, 1|$, and if we take $p_n = 1/n$, then it is known [3] (1) that $|\overline{\mathbb{N}}, 1/n| \sim |\mathbb{R}, \log n, 1|$. We write throughout, for any sequence $\{u_n\}$,

$$\Delta u_n = u_n - u_{n+1}$$
, $\Delta^2 u_n = \Delta(\Delta u_n)$.

1.2. – The object of this paper is to discuss a problem on $|\overline{\mathbf{N}}, p_n|$ -summability factors which seems to have not been tackled so far. We consider the problem of determining suitable type of sequences $\{\varepsilon_n\}$ such that $\sum \varepsilon_n a_n$ may be summable $|\overline{\mathbf{N}}, p_n|$, whenever $\sum a_n$ is not summable $|\overline{\mathbf{N}}, p_n|$, but the total variation of $(\overline{\mathbf{N}}, p_n)$ -mean of $\sum a_n$ is of certain order, say μ_n , where μ_n is positive and non-decreasing.

^(*) Indirizzo: Departement of Mathematics and Statistics, Aligarh Muslim University, Aligarh, India.

^(**) Ricevuto: 27-III-1969.

⁽¹⁾ This can be easily proved by employing the method used in IYER [3].

We observe that whenever $p_n = 1$ for all n, our theorem includes the following theorem of Pati [5].

Theorem A. Let $\{\lambda_n\}$ be a convex sequence such taht $\sum n^{-1} \lambda_n$ is convergent. If $\sum a_n$ is bounded [R, logn, 1], then $\sum \lambda_n a_n$ is summable | C, 1 |

When $p_n = 1/n$, it is to be noted that the hypothesis of our theorem is weaker than a modified version of the following theorem of Kulshreshtha [4].

Theorem B. If $\sum a_n$ is bounded [R, logn, 1] and if the sequence $\{\lambda_n\}$ satisfies the following conditions:

(a) λ_n is positive, bounded and monotonic non-increasing,

(b)
$$\sum_{n=2}^{m} \lambda_n/(n \log n) = O(1),$$

(e)
$$\sum_{n=2}^{m} \log n \cdot \Delta \lambda_{n+1} = O(1),$$

(d)
$$\sum_{n=2}^{m} n \log n \cdot |\Delta^2 \lambda_n| = O(1),$$

as $m \to \infty$, then $\sum a_n \lambda_n$ is summable | R, $\log n$, 1 |.

However, it is natural to get factors heavier than that of Theorem B.

2.1. - We establish the following theorem.

Theorem. Let
$$p_n > 0$$
 $(n = 0, 1, 2, ...)$ and $(n + 1) p_n \leqslant KP_n$. If
$$\sum_{v=1}^n (p_v/P_{v-1}) |\bar{t}_c^v| = O(\mu_n),$$

where $\{\mu_n\}$ is a positive monotonic non-decreasing sequence, and if the sequences $\{\varepsilon_n\}$ and $\{\mu_n\}$ are such that

(i) (a)
$$\varepsilon_n \, \mu_n = O(1) \, ,$$

(i) (b)
$$\Delta \mu_n = O\left(\frac{|\Delta p_n|}{p_n} \mu_n\right) \qquad as \quad n \to \infty,$$

(ii)
$$\sum_{n=1}^{\infty} P_n \left| \Delta(1/p_n) \right| \mu_n \left| \Delta \varepsilon_{n+1} \right| < \infty,$$

(iii)
$$\sum_{n=1}^{\infty} (P_n/p_n) \, \mu_n \, \big| \, \Delta^2 \, \varepsilon_n \, \big| < \infty \,,$$

then the series $\sum \varepsilon_n a_n$ is summable $|\overline{N}, p_n|$.

2.2. - We require the following lemmas for the proof of our theorem.

Lemma 1. Let $p_n > 0$, for all $n \ge 0$, such that (n+1) $p_n \le KP_n$. If $\varepsilon_n \mu_n = O(1)$ and

$$\sum_{n=1}^{\infty} (P_n/p_n) \, \mu_n \, | \, \Delta^2 \, \varepsilon_n \, | < \infty,$$

where $\{\mu_n\}$ is a positive monotonic non-decreasing sequence, then

$$\sum_{n=1}^{\infty} \mu_n \mid \Delta \varepsilon_n \mid < \infty.$$

Proof. By hypothesis and by a lemma of Andersen [1] (see also [2], Lemma 8), we have

$$\Delta \varepsilon_n = \sum_{v=n}^{\infty} \Delta^2 \varepsilon_v$$
.

Now

$$\sum_{n=1}^{\infty} |\mu_n| |\Delta |\varepsilon_n| = \sum_{n=1}^{\infty} |\mu_n| |\sum_{v=n}^{\infty} |\Delta^2 |\varepsilon_v| \leqslant$$

$$\leqslant \sum_{v=1}^{\infty} |\Delta^2 |\varepsilon_v| |\sum_{n=1}^{v} |\mu_n| \leqslant \sum_{v=1}^{\infty} |\Delta^2 |\varepsilon_v| |\mu_v| (1+v) \leqslant$$

$$\leqslant K \sum_{n=1}^{\infty} |P_v/p_v| |\mu_v| |\Delta^2 |\varepsilon_v| \leqslant K$$
(2),

by hypothesis.

Lemma 2. If the sequences $\{\mu_n\}$ and $\{\varepsilon_n\}$ satisfy the same conditions as in the Theorem, then

$$(P_{n-1}/p_n) \mu_n \mid \Delta \varepsilon_n \mid = O(1)$$
, as $n \to \infty$.

Proof. Since

$$\sum_{n=1}^{\infty} \left| \left. \varDelta \left(\frac{P_{n-1}}{p_n} \, \mu_n \, \mid \varDelta \, \varepsilon_n \, | \right) \right| \leqslant$$

 $^{^{(2)}}$ K denotes throughout an absolute constant, not necessarily the same at each occurrence.

248 F. M. KHAN [4]

$$\leq \sum_{n=1}^{\infty} \left(P_{n-1}/p_n \right) \mu_n \mid \Delta^2 \varepsilon_n \mid + \sum_{n=1}^{\infty} \mu_n \mid \Delta \varepsilon_{n+1} \mid + \sum_{n=1}^{\infty} \mu_n \mid P_n \mid \Delta (1/p_n) \mid \mid \Delta \varepsilon_{n+1} \mid + \sum_{n=1}^{\infty} \left(P_n/p_{n+1} \right) \mid \Delta \mu_n \mid \mid \Delta \varepsilon_{n+1} \mid$$

$$+ \sum_{n=1}^{\infty} \left(P_n/p_{n+1} \right) \mid \Delta \mu_n \mid \mid \Delta \varepsilon_{n+1} \mid$$
 [by hypothesis (ii), (iii) and Lemma 1]
$$\leq K + \sum_{n=1}^{\infty} \left(P_n/p_{n+1} \right) \mid \Delta \mu_n \mid \Delta (1/p_n) \mid \Delta \varepsilon_{n+1} \mid$$
 [by hypothesis (i)]

 $\leq K$.

Therefore $(P_{n-1}/p_n) \mu_n \mid \Delta \varepsilon_n \mid \in B.V$, and hence $(P_{n-1}/p_n) \mu_n \mid \Delta \varepsilon_n \mid = O(1)$ as $n \to \infty$.

2.3. - Proof of the Theorem.

Let

$$\tilde{\sigma}_n^p = (1/P_n) \sum_{v=1}^n p_v \sum_{\mu=1}^v a_\mu \, \varepsilon_\mu$$

and

$$\bar{t}_n^p = (1/P_n) \sum_{v=1}^n P_{v-1} a_v$$
.

Then

$$\bar{\sigma}_{n}^{p} - \bar{\sigma}_{n-1}^{p} = \left(\frac{1}{P_{n-1}} - \frac{1}{P_{n}}\right) \sum_{v=1}^{n} P_{v-1} a_{v} \varepsilon_{v}$$

$$= \frac{p_n}{P_{n-1} P_n} \sum_{v=1}^n P_{v-1} a_v \, \varepsilon_v = \frac{p_n}{P_{n-1} P_n} \, S \,,$$

where

$$S = \sum_{n=1}^{n-1} P_v \, \bar{t}_v^p \, \Delta \varepsilon_v + \varepsilon_n \, P_n \, \bar{t}_n^p = S_1 + S_2 \,,$$

say.

Now, as $m \to \infty$, and observing that $\sum_{n=v+1}^{m} \frac{p_n}{P_n P_{n-1}} < \frac{1}{P_v}$, we have

$$\sum_{n=1}^{m} \frac{p_{n}}{P_{n-1}P_{n}} \mid S_{1} \mid \leq$$

$$\leq \sum_{n=1}^{m} \frac{p_{n}}{P_{n}P_{n-1}} \sum_{i=1}^{n-1} P_{v} \mid \overline{t}_{v}^{p_{i}} \mid \Delta \varepsilon_{v} \mid = \sum_{v=1}^{m} P_{v} \mid \overline{t}_{v}^{p_{i}} \mid \Delta \varepsilon_{v} \mid \sum_{n=v+1}^{m} \frac{p_{n}}{P_{n}P_{n-1}}$$

$$= O(\sum_{v=1}^{m} \mid \overline{t}_{v}^{p_{i}} \mid \Delta \varepsilon_{v} \mid) = O\left(\sum_{v=1}^{m} \frac{P_{v-1}}{p_{v}} \mid \Delta \varepsilon_{v} \mid \frac{p_{v}}{P_{v-1}} \mid \overline{t}_{v}^{p_{i}} \mid)\right)$$

$$= O\left(\sum_{v=1}^{m-1} \frac{P_{v-1}}{p_{v}} \mid \Delta^{2} \varepsilon_{v} \mid \mu_{v}\right) + O\left(\sum_{v=1}^{m-1} \mid \Delta \varepsilon_{v+1} \mid \mu_{v}\right) + O\left(\sum_{v=1}^{m-1} P_{v} \mid \Delta(1/p_{v}) \mid \Delta \varepsilon_{v+1} \mid \mu_{v}\right) + O\left(\frac{P_{m-1}}{p_{m}} \mid \mu_{m} \mid \Delta \varepsilon_{m} \mid)\right)$$

$$= O(1), \qquad \text{by hypotheses and Lemma 1 and 2.}$$

Next, as $m \to \infty$, we have

$$\begin{split} \sum_{n=1}^{m} \frac{p_n}{P_n P_{n-1}} \mid \mathcal{S}_2 \mid &= \sum_{n=1}^{m} \frac{p_n}{P_n P_{n-1}} \mid \varepsilon_n \mid P_n \mid \overline{t}_n^{\rho} \mid \\ &= \sum_{n=1}^{m} \mid \varepsilon_n \mid \frac{p_n}{P_{n-1}} \mid \overline{t}_n^{\rho} \mid = O(\sum_{n=1}^{m-1} \mid \Delta \mid \varepsilon_n \mid \mid \mu_n) + O(\mid \varepsilon_m \mid \mid \mu_m) \\ &= O(1), \quad \text{by hypotheses and Lemma 1.} \end{split}$$

Thus the proof of the Theorem is completed.

In conclusion the author would like to express his sincerest thanks to Dr. Z. U. Ahmad for his kind encouragement and advice.

References.

- [1] A. F. Andersen, Comparison theorems in the theory of Cesàro summability, Proc. London Math. Soc. (2) 27 (1928), 39-71.
- [2] H. C. Chow, Note on convergence and summability factors, J. London Math. Soc. 29 (1954), 459-476.
- [8] A. V. V. IYER, The equivalence of two methods of absolute summability, Proc. Japan Acad. 39 (1963), 429-431.
- [4] G. C. N. Kulshreshtha, Absolute Riesz summability factors of infinite series, Math. Z. 86 (1965), 365-371.
- [5] T. Pati, Absolute Cesàro summability factors of infinite series, Math. Z. 78 (1962), 293-297.

* * *