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On |N, 7.

- Summability Factors of Infinite Series. (%)

w
1.1. - Let ) a, be a given infinite series, with the sequence of partial sums

n=1
{ $2}, and let { p,} be a sequence of real positive constants such that

Pn e z Po -

v==0
We write

— 1 n .
v ) —
Gn - I)n vgo pb SU ’ tn - P

The series > @, is said to be absolutely summable (N, p,), or summable
| N, p.|, if 7 € B.V.. If we take p,= 1 for all n, then it is known that| N, 1|~
~]0, 1|, and if we take p,= 1/n, then it is known [8] ® that | N, 1/n| ~
~| R, logn, 1|. We write throughout, for any sequence {un},

Aty = Uy — Uiy A, = A(dw,) .

1.2. — The object of this paper is to discuss a problem on | N, p, [-summab-
ility factors which seems to have not been tackled so far. We consider the
problem of determining suitable type of sequences {e,} such that > e, a,
may be summable | N, p,|, whenever > a, is not summable | N, p,|, but
the total variation of (1\7, Pa)-mean of 2 @, is of certain order, say u,, where
- is positive and non-decreasing.

(*) Indirizzo: Departement of Mathematics and Statisties, Aligarh Muslim
University, Aligarh, India.
(**) Ricevuto: 27-111-1969.
(*) This can be easily proved by employing the method used in Iver [3].
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We observe that whenever p, = 1 for all #, our theorem includes the fol-
lowing theorem of Parr [5].

Theorem A. Let {ln} be a convex sequence such taht Z n—t 4, is con-
vergent. If > a, is bounded [R, logn, 1], then 3 i, a, is summable | C, 1|

When p,==1/n, it is to be noted that the hypothesis of our theorem is weaker
than a modified version of the following theorem of KULSHRESHTHA [4].

Theorem B. If Y a, is bounded [R, logn, 1] and if the sequence {l,,}
satisfies the following conditions:

(a) A, is positive, bounded and monotonic non-increasing,

m

(b) 3 Au(nlogn) = O(1),

() > logn-Ald,, = 0(1),

(@) 3 mlogn-|A422,| = 01),

ne=2

as m —- oo, then > a, A, is summable | R, logn, 1.

However, it is natural to get factors heavier than that of Theorem B.
2.1. — We establish the following theorem .
Theorem. Let p,>0 (n=0,1, 2, ...) and (» + 1)p, < KP,. If

Z (Z)zV/Pv—l) I zp[ = 0(/"1&) 3

n=1

where {,u,,} is a positive monotonic non-decreasing sequence, and if the sequences
{e.} and { ta} are such that

) (a) e i = 0(1)
@ (b) 4 of Z'Z;’”",un) as n— co,
(i) z Pul A1/p) | ttn | 4 o] < oo,

(i) :z (Pufpa) | 4% £,] < 00,

then the series Y ¢, a, is summable | N, p,|.
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2.2. — We require the following lemmas for the proof of our theorem.

Lemma 1. ZLet p,>0, for all n>0, such that (n - 1) p, < KP,.
If &, 1n = 0(1) and

00
z (Pn/pn) Ln ‘ A? En ! < o0,
n=1
where {Mn} 8 @ positive monotonic non-decreasing sequence, then

i | A &y | < oo

M s

n=1

[

Proof. By hypothesis and by a lemma of ANDERSEN [1] (see also
[2], Lemma 8), we have

Now
o | el = 3w |3 A2e,| <
Ma=] t=1

M s

i

n=1

‘A?‘Svlﬂv(l “;‘*’U)<

M s

| 476, 3 o

1 n=1 v

[\

<

i

1

I

v

K D (Pofps) us | A% 8 | <K (%),

=

-

by hypothesis.

Lemma 2. If the sequences {u.} and {e,} satisfy the same conditions

as in the Theorem, then

(Poa/Pa) pin | den| = 0O(1), as n— oo .
Proof. Since

o [)
S |a(Z2u 4] |<
1 pn

n=2

(?) I{ denotes throughout an absolute constant, not necessarily the same at each

occurrence.
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< 2 (Puea/pa) pin [ A2 |+ 3 ptn [ Ao |+ 3 ptu P | AQp2)]|| Aara | =

ne=1 n=1 n==1

('Pn/p7l+1) 1 Alunl i A8n+1i

e

!
-+

i

=]

KK + 3 (PufPut1) | Apal| denry|  [by hypothesis (i), (iii) and T.emma 1]
n=1

<K -+ % Popn | AQ[pa)]| Aepiy | [by hypothesis (i)]

n=]

< K.

Therefore (Pn—./p.) pn| de,| € B.V. and hence (Pam1/Pn) ptn | dea | = O(1) as

n—> 0.

2.3. = Proof of the Theorem.

Let
o =(1/P,) 3 p, 3 a, €,
vl p=1
and
{: = (I/Pn) Z -Pv—l @y .
=1
Then
= 1 1y = P
mom T\ TR B
Pn = Pn o
= P, v & = e N
PP, o TR
where
n—1 - _
S= 3 P,t} de, + &, P12 = §, + 8,,
v=1
53y,
Z, P 1
Now, as m — co, and observing that > L < =, we have

n=zy-1 Pn Pn—1 Pv
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m

2]
n=1 In l

S =

mw

3 Pl del- S pnida) 3 G

~n~n~1 re=1 v=1 =pd1 - =1

= 0( é [ 4 e ) = 0( E P,

v=1 P

Po
4] £ 1)

m—1 I-—)y m—1
0( S =] 40 evluv> + 003 | A eprs] )+
g V== ]

=]

m—1
““O(zpv 1/771:!‘4]81:-}‘1[/-10)‘1“0( - /m'AEml)
Vo=
= 0(1), by hypotheses and Lemma 1 and 2,
Next, as m — oo, we have

3%

n—1

|8 = 5 gl e 2]

m

n—1
=3 lelz™ D 7] =0 S e ) - O en] 1)
n=1 =1
= 0(1), by hypotheses and Lemma 1.
Thus the proof of the Theorem is completed.

In conclusion the author would like to express his sincerest thanks to Dr.
Z. U. Armap for his kind encouragement and advice.
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