CAROL SINGH (*)

An Inversion Integral for a Whittaker Transform. (**)

1. - Introduction.

In [2] K. N. Shrivastava has given solutions for integral transforms of the type

(1.1)
$$\int_{u}^{1} (t-u)^{v-\frac{1}{2}} M_{k,v}(t-u) g(t) dt = f(u).$$

In the present paper we solve the integral equation (1.1) with a different method. It may be of interest to note that the inversion integral we establish does not contain any polynomial or function, secondly it involves a fractional derivative.

The WHITTAKER's functions are defined as

(1.2)
$$W_{k,\mu}(x) = \frac{\Gamma(-2\mu) \ M_{k,\mu}(x)}{\Gamma(\frac{1}{2} - \mu - k)} + \frac{\Gamma(2\mu) \ M_{k,\mu}(x)}{\Gamma(\frac{1}{2} + \mu - k)}$$

and

$$M_{k,\mu}(x) = x^{\mu + \frac{1}{2}} e^{-x/2} {}_{1}F_{1} \left(\frac{1}{2} + \mu - k; 2\mu + 1; x \right).$$

2. - In the result ([1], p. 200, (89)) assuming

$$\lambda = -\nu \qquad (0 < \nu < \frac{1}{2}),$$

(ii)
$$\mu = k - \nu - \frac{1}{2}$$
 $(\mu = 1, 2, ...)$

^(*) Indirizzo: Department of Mathematics, Government Polytechnic Institute, Raigarh (M. P.), India.

^(**) Ricevuto: 3-VI-1969.

we get

$$(2.1) A \int_{0}^{1} x^{\nu - \frac{1}{2}} e^{-ax/2} M_{k,\mu}(ax) (1-x)^{k-\nu-(3/2)} dx = e^{-a} a^{\nu+1/2},$$

where

$$A = \Gamma(-2\nu) / \left\{ \Gamma(\frac{1}{2} - \nu - k) \ \Gamma(k - \nu - \frac{1}{2}) \right\}.$$

Changing the variable by taking xa = t - u and a = v - u, we obtain

$$(2.2) \quad A \int_{u}^{v} (t-u)^{v-\frac{1}{2}} e^{-(t-u)/2} \ M_{k,v}(t-u) (v-t)^{k-v-\frac{3}{2}} dt = e^{-(v-u)} (v-u)^{v+k-\frac{1}{2}}.$$

 $(d/dx)^{\alpha} g(x)$ is an ordinary derivative of g(x) if $\alpha = 0, 1, 2, ...$; and, if α is not an integer, the fractional derivative is defined by ([1], Chapt. XIII):

(2.3)
$$\left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^{\alpha}g(x) = \frac{1}{\Gamma(x-\alpha)}\frac{\mathrm{d}^n}{\mathrm{d}x^n}\int_{x}^{\infty}g(s)\ (s-x)^{n-\alpha-1}\,\mathrm{d}s\ ,$$

$$n-1 < \alpha < n$$
 $(n = 0, 1, 2, ...),$

and

$$\left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^{\alpha} \left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^{\beta} g(x) = \left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^{\alpha+\beta} g(x) \ .$$

3. - Theorem.

If $e^{-u/2} f(u)$ and its first $[v + k + \frac{1}{2}]$ derivatives are absolutely continuous, if the [v + k + (3/2)] - th derivative is sectionally continuous for $0 < u_0 \le u \le 1$ and if $e^{-u/2} f(u)$ and its first $[v + k + \frac{1}{2}]$ derivatives vanish for $u \ge 1$, then the solution to the integral equation (1.1) is given by

$$(3.1) g(t) = \frac{(-1)^{\nu+k+\frac{1}{2}}A}{\Gamma(\nu+k+\frac{1}{2})} e^{-t/2} \int_{t}^{1} e^{v} (v-t)^{k-\nu-(3/2)} \left(\frac{\mathrm{d}}{\mathrm{d}v}\right)^{\nu+k+(1/2)} \left\{e^{-v/2} f(v)\right\} \mathrm{d}v.$$

Proof. Substituting the value of g(t) in (1.1) from (3.1), we get

$$(3.2) I = \frac{(-1)^{\nu+k+\frac{1}{2}}A}{\Gamma(\nu+k+\frac{1}{2})} \int_{u}^{1} (t-u)^{\nu-\frac{1}{2}} M_{k,\nu}(t-u) \cdot \\ \cdot \left[e^{-t/2} \int_{t}^{1} e^{v} (v-t)^{k-\nu-(3/2)} \left(\frac{\mathrm{d}}{\mathrm{d}v} \right)^{\nu+k+\frac{1}{2}} \left\{ e^{-v/2} f(v) \right\} \mathrm{d}v \right] \mathrm{d}t .$$

The change of the order of integration gives us

$$(3.3) I = \frac{(-1)^{v+k+\frac{1}{2}}A}{\Gamma(v+k+\frac{1}{2})} \int_{u}^{1} e^{v} \left(\frac{d}{dv}\right)^{v+k+\frac{1}{2}} \left\{ e^{-v/2}f(v) \right\} \cdot \left[\int_{u}^{v} (t-u)^{v-\frac{1}{2}} M_{k,v}(t-u) e^{-t/2} (v-t)^{k-v-(3/2)} dt \right] dv.$$

Using the result (2.2) we get from (3.3):

$$(3.4) I = \frac{(-1)^{\nu+k+\frac{1}{2}}}{\Gamma(\nu+k+\frac{1}{2})} \int_{u}^{1} e^{u/2} (v-u)^{\nu+k+\frac{1}{2}} \left(\frac{\mathrm{d}}{\mathrm{d}v}\right)^{\nu+k+\frac{1}{2}} \left\{e^{-v/2} f(v)\right\} \mathrm{d}v.$$

Since $0 < \nu < \frac{1}{2}$ and $\mu = k - \nu - \frac{1}{2}$ ($\mu = 1, 2, ...$), we get $\nu + k + \frac{1}{2} = \mu + 2\nu + 1$ and also $\mu + 2\nu + 1 > 2$. Obviously $\mu + 2\nu + 1$ is not an integer. The relation (3.4) can be rewritten as

(3.5)
$$I = \frac{(-1)^{\mu+1} e^{u/2}}{\Gamma(\mu+1+2\nu)} \int_{u}^{1} (v-u)^{\mu+2\nu} \left(\frac{\mathrm{d}}{\mathrm{d}v}\right)^{\mu+2\nu+1} \left\{e^{-v/2} f(v)\right\} \mathrm{d}v.$$

Integration by parts for $\mu + 1$ times under the conditions of the theorem, gives

(3.6)
$$I = \frac{e^{u/2}}{\Gamma(2v)} \int_{v}^{1} (v-u)^{2v-1} \left(\frac{\mathrm{d}}{\mathrm{d}v}\right)^{2v} \left\{e^{-v/2} f(v)\right\} \mathrm{d}v.$$

But (2.3) with n = 0, $\alpha = -2v$, x = u and g(s) = 0 for $s \ge 1$ becomes

$$\left(\frac{\mathrm{d}}{\mathrm{d}u}\right)^{-2\nu}g(u) = \frac{1}{\Gamma(2\nu)}\int_{0}^{1}g(s)(s-u)^{2\nu-1}\,\mathrm{d}s$$

from which it follows immediately that

$$I = e^{u/2} \left(\frac{\mathrm{d}}{\mathrm{d}u} \right)^{-2r} \left(\frac{\mathrm{d}}{\mathrm{d}u} \right)^{2r} \left\{ e^{-u/2} f(u) \right\} \qquad \mathrm{or} \qquad I = f(u) \; .$$

This establishes the Theorem.

The author is grateful to Dr. V. K. VARMA for guidance.

References.

- [1] A. Erdélyi, Tables of Integral Transforms, Vol. 2, McGraw-Hill, New York 1954.
- [2] K. N. SRIVASTAVA, On integral equations involving Whittaker's function. Proc. Glasgow Math. Assoc. 7 (1966), 125-127.

* * *