M. BEHZAD (*)

The Degree Preserving Group of a Graph. (**)

1. - Introduction and Definitions.

We consider (ordinary) graphs, that is, finite undirected graphs with no loops or multiple edges. The (vertex) $\operatorname{group} \Gamma(G)$ of a $\operatorname{graph} G$ is the group of all adjacency preserving permutations of the vertices of G. It is clear from the definition that if $\varphi \in \Gamma(G)$, and $v \in V(G)$, then $\deg(\varphi v) = \deg v$, where V(G) denotes the vertex set of G and $\deg v$ denotes the degree of v. Hence $\Gamma(G)$ is a subgroup of $\Gamma_d(G)$, where $\Gamma_d(G)$ called the degree preserving group of G denotes the group of permutations of the elements of V(G) such that, for each $v \in V(G)$ and $\varphi \in \Gamma_d(G)$, we have: $\deg v = \deg(\varphi v)$. The group $\Gamma(G)$ as well as some other groups associated with a graph G and their relations have been the subject of many investigations. (See, for example, [1] [2], [3] and [4].) In this Note we find necessary and sufficient conditions to have $\Gamma(G) \cong \Gamma_d(G)$. (In fact, we can replace the isomorphism sign \cong by the identity sign \equiv .)

2. - Results.

In the first theorem we consider disconnected graphs, that is, graphs with two or more components.

Theorem 1. Let G be a disconnected graph. Then $\Gamma(G)\cong \Gamma_d(G)$ if and only if:

- (i) For every component H of G we have $\Gamma(H) \cong \Gamma_d(H)$, and
- (ii) no two nontrivial components of G have vertices of the same degree.

^(*) Indirizzo: Pahlavi University, Shiraz, Iran.

^(**) Ricevuto: 7-I-1970.

Proof. The necessity of (i) is obvious. If two nontrivial components of G, say H_1 and H_2 contain vertices v_1 and v_2 , respectively, such that deg $v_1 = \deg v_2$, then we can find an element in $\Gamma_d(G)$ which is not a member of $\Gamma(G)$. Hence the condition (ii) is necessary as well.

To prove the sufficiency of the conditions it is sufficient to show that an arbitrary element α of $\Gamma_d(G)$ is also an element of $\Gamma(G)$. By (ii) α maps vertices of a nontrivial component H of G to itself; thus (i) implies that the restriction of α to V(H) preserves adjacency. This completes the proof of the theorem.

According to Theorem 1, we must confine ourselves to connected graphs. The neighborhood $N_{\sigma}(v)$ of a vertex v of a graph G is defined to be the set of all vertices of G which are adjacent to v; the closed neighborhood $\overline{N}_{G}(v)$ of v is $N_{G}(v) \cup \{v\}$. (Two vertices which are not adjacent are disjoint.)

Theorem 2. Let G be a connected graph. Then $\Gamma(G) \cong \Gamma_d(G)$ if and only if:

- (i) Equidegree vertices of G two of which are disjoint are all mutually disjoint and all have the same neighborhood, and
- (ii) equidegree vertices of G two of which are adjacent are all mutually adjacent and all have the same closed neighborhood.

Proof. We first assume that $\Gamma(G) \cong \Gamma_d(G)$. Let S be the set of all elements of V(G) each of which has degree d. If |S| = 1, then there is nothing to prove. Hence, suppose that $|S| \geqslant 2$.

Let u_1 , $u_2 \in S$ such that $u_1u_2 \notin E(G)$, where E(G) denotes the edge set of G, and let v_1 , $v_2 \in S$ such that $v_1 v_2 \in E(G)$. If $\{u_1, u_2\} \cap \{v_1, v_2\} = \phi$, then we define a permutation α on V(G) as follows:

$$egin{array}{lll} lpha \, u_1 &= v_1 \,, & & lpha \, v_1 &= u_1 \,, \\ & lpha \, u_2 \, = \, v_2 \,, & & lpha \, v_2 \, = \, u_2 \,. \end{array}$$

and

$$\alpha w = w$$
,

where $w \in V(G) - \{u_1, u_2, v_1, v_2\}$. It is easily seen that $\alpha \in \Gamma_d(G)$ and $\alpha \notin \Gamma(G)$, which is a contradiction. If $\{u_1, u_2\} \cap \{v_1, v_2\} \neq \emptyset$, we might suppose that $v_1 = u_1$. Again, it is easy to solw that $\Gamma_d(G)$ contains elements which are not in $\Gamma(G)$. Thus in any case, if two elements of S are adjacent, then all elements of S are mutually adjacent; and conversely, if a pair of elements of S are disjoint, then all elements of S are mutually disjoint.

Next, we suppose that elements of S are mutually disjoint and prove that

they must have the same neighborhood. Assume to the contrary that S contains two elements u_1 and u_2 with $N_g(u_1) \neq N_g(u_2)$. Then we define a permutation α on V(G) as follows:

$$\alpha u_1 = u_2, \qquad \alpha u_2 = u_1$$

and

$$\alpha w = w$$
,

where $w \in V(G) \longrightarrow \{u_1, u_2\}$. Then $\alpha \in \Gamma_d(G)$, and $\alpha \notin \Gamma(G)$ produce a contradiction. Following the above argument we conclude that if elements of S are all mutually adjacent, then they must have the same closed neighborhood. This completes the proof of the necessity of the conditions.

To prove the sufficiency, we must show that $\Gamma_d(G) \subset \Gamma(G)$; i.e., we must show that each element α of $\Gamma_d(G)$ preserves adjacency. Let $u, v \in V(G)$ such that $u v \in E(G)$. To show that $\alpha u \alpha v \in E(G)$, we consider two cases.

Case 1. deg $u = \deg v = d$. Since $\deg(\alpha u) = \deg(\alpha v) = d$, we conclude from (ii) that $\alpha u \ \alpha v \in E(G)$.

Case 2. deg $u \neq \deg v$. Since $\deg(\alpha u) = \deg u$, and $v \in N_g(u)$ we have: $v \in N_g(\alpha u)$. Thus $v \in M_g(\alpha v)$ which implies that $\alpha u \in N_g(v)$. Thus $\alpha u \in N_g(\alpha v)$. Hence $\alpha u \in M_g(\alpha v)$ as was required to prove.

Corollary 1. Among regular graphs G, the complete graph and its complement are the only graphs for which $\Gamma(G) \cong \Gamma_d(G)$.

Corollary 2. Among trees having two or more vertices, the star graph $K_{1,n}$, $n \ge 1$, is the only tree for which we have $\Gamma(K_{1,n}) \cong \Gamma_d(K_{1,n})$.

Proof. Let T be a tree whose diameter is greater than two with the property that $\Gamma(T) \cong \Gamma_d(T)$. Then T contains two nonadjacent vertices of degree 1. By Theorem 2 this is impossible.

Corollary 3. Let G be a graph such that $\Gamma(G) \cong \Gamma_d(G)$ and let v be a cut-vertex of G. Then the degree of no other vertex of G equals that of deg v.

Proof. Assume to the contrary that G contains a vertex v', $v' \neq v$, such that $\deg v = \deg v'$. Then by Theorem 1, v and v' belong to the same component H of G. Suppose u and w are two vertices of H adjacent to v which lie in two different components of H-v. If $v' \in \{u, w\}$, that is, if, say v' = u,

then $uw \in E(G)$ contradicts the fact that v is a cut-vertex of G. Hence, we assume that $v' \notin \{u, w\}$. Then v' is adjacent to both u and w and again we contradict the fact that v is a cut-vertex of G. This completes the proof.

It might be conjectured that if G is a graph with a cut-vertex v, and such that $\Gamma(G) \cong \Gamma_d(G)$, then:

- (1) Every block B of G has the property $\Gamma(B) \cong \Gamma_d(B)$, and
- (2) every component H of G-v has the property $\Gamma(H)=\Gamma_d(H)$.

It is easy to find counter examples to show that neither (1) nor (2) is, in general, correct. In fact, the graph given in Fig. 1 is a counter example for both.

Fig. 1.

It is also worth mentioning that if G is a graph with a cut-vertex v and if every component H of G-v has the property $\Gamma(H) \cong \Gamma_d(H)$, then the graph G

might not have the property $\Gamma(G) \cong \Gamma_d(G)$. On the other hand, if every block B of G has the property $\Gamma(B) \cong \Gamma_d(B)$, then not necessarily the relation $\Gamma(G) \cong \Gamma_d(G)$ is true.

References.

- [1] M. BEHZAD and H. RADJAVI, The total group of a graph, Proc. Amer. Math. Soc., 19 (1968), 158-163.
- [2] R. FRUCHT, Herstellung von Graphen mit vorgegebener abstrakter Gruppe, Composition Math. 6 (1938), 239-250.
- [3] H. Izbicki, Regular Graphen beliebigen Grades mit vorgegebenen Eigenschaften, Monatsh. Math. 64 (1960), 15-21.
- [4] H. Whitney, Congruent graphs and connectivity of graphs, Amer. J. Math. 54 (1932), 150-168.

Abstract.

Though the (vertex) group $\Gamma(G)$ of a graph G is fundamental in graphical enumerations, yet there is no practical method for producing groups of graphs. In this Note we define the degree preserving group $\Gamma_a(G)$ of a graph G as the group of all permutations of the vertices of G each of which preserves the degree of each vertex of G, and characterize those graphs G for which $\Gamma(G)$ and $\Gamma_a(G)$ are isomorphic. Thus we yield an easy method for producing the group of a certain class of graphs.

* * *