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MarTHA M., MATTAMAL (*)

Axiomatic Characterization

of the Lebesgue Integral. (*¥)

In this paper we define the LEBESGUE integral axiomatically as a countably
additive positive linear functional on a linear lattice of real valued functions
satisfying the SToNE condition over an abstract set. Considering only the real
valued functions in some of the basic constructions of the integrals existing
in the literature, we show briefly that the integrals thus constructed satisfy
the axioms. The integrals of LEBESGUE, RIESZ, DANIELL, STONE, BOURBAKI,
the integral generated by a measure and the integral generated by a volume
are shown to be such examples of the LEBESGUE integral.

The main result of the paper is in Section 4 where we show that the LiEBES-
GUE integral may be generated by a volume (as defined by BOGDANOWICZ
in [1]) or by a measure.

§ 1. - Axiomatic definition of a Lebesgue integral.

We shall denote the non-negative subfamily of a given family F of real
valued functions by F+. For the functions f, g defined on a set X we shall
define the operations fUyg, fNyg, fN1, |f| by

(f U 9)(@) = sup {f(@), g@)},  (f N g)(a) = int{f@), 9@},
(f N 1)) =int{f(@),1}, |fl@@) =|f(@)] forallweX.

(*) Indirizzo: Department of Mathematics, Howard TUniversity, Washington,
D.C., 20001, U.S.A..

(**) This paper is part of the author’s doctoral dissertation written under the
direction of Professor W. M. BogpaNowicz at the Catholic University of America,
Washington, D.C. . — Ricevuto: 23-ITI-1971.
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Definition. By a LEBESGUE integral we shall mean a real valued fune-
tional [ with domain D([) =L consisting of functions from a set X into
the space R of reals and satisfying the following conditions:

(1) L is a linear space and [ is a linear funectional on IL; that is if
fy9€L and a,beR, then af +bgeL and [(af + byg) =aff -+ bfyg.

(2) 1t f,gel, then fUgelL.

(8} L satisfies the Stoxm condition; that is if felL then fnlel.
(4) | is a positive functional on L; that is if e L+ then ff>o.

(8) [ is a countably additive functional on L; that is if f, € I+, f(») =

=D fa(#) < oo for all e X and Y [f,< oo, then fe L+ and [f= 3 [f,.

n=1 A=l n=1

The LEBESGUE integral is said to be complete if L contains every nom-
negative function g on X to which there corresponds an fe L such that
0<g(@)<f(w) for all zeX and [f=0.

Remark 1. The second condition in the definition can be replaced by
(2) fngel for all f,geL (so that L is a lattice), or by (2)" |f|eL for all
fe L.

Remark 2. Condition (5) in the definition can be replaced by:
(8)' If g,elL is an increasing sequence convergent at every point of
the set X to a finite valued function g and the sequence [g, is bounded, then
geL and [g, converges to [g.

§ 2. - Examples of the Lebesgue integral.

In the following examples of integrals of real valued functions we use in
each case the terminology and notation of the literature referred to.

Example 1. The integral generated by a measure on an abstract set X
(see [7]) is a LEBESGUE integral. Axioms (1), (2), (4), () are well known pro-
perties of the class of summable functions. To prove (3) we first note that,
if f is measurable, then so is f N 1. The summability of f N1 now follows
from the inequality |[fM1|<|f].

If the measure u is complete, then we shall show that the integral is a
complete LEBESGUE integral. Lebt 0<g(x)<f(x) for all #eX and [fdu=0.
Then f(z) = 0 almost everywhere and thus g(#) = 0 except on a subset of a
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set of measure zero. Since the measure is complete, g is measurable and
g(x) = 0 almost everywhere. Hence g is summable.

This example also covers the case of the classical LEBESGUE integral on
the real line. In [8] it is shown that the integral of LEBESGUE coincides with
that of Rimsz.

Example 2. If the initial class T, considered by DanierL [6] satisfies
the SToNE condition, then the integral developed by DANIELL is a complete
LEBESGUE integral in our sense. We shall assume that fnleT, for all fe T,.

T4 is established in Section 7 of [6] that the space of summable functions
is o linear lattice on which I is a positive linear countably additive functional.

To prove the completeness, let 0<g<f and I {(fy=0. Since Iy < Ith
and I(g)<I(f), we see that I(g) = I(g) =0, and hence ¢ is summable.

‘We shall prove that the space of summable functions satisfies the SToNE
condition. Take any summable function f. Since 1) = I(f), for any >0
there exist h, keT, such that —k<f<h and I(h+k)<e Then hN1lely,
kv {(—1)eT,, and

—(ku—1)<fNnl<hnNl.

Moreover, since h4+k>0,
N+ FkV—1i<Ih+E)<e.
It follows that I(fN1) =I(fn1), i.e. that f N1 is summable.

Example 3. The integral constructed by STONE [9] is a complete L~
BESGUE integral if the initial class satisfies the STONE condition.

It is established if [9]L that the class of integrable functions is a linear
lattice and L is a countably additive positive linear functional on it. In [9]IX
is shown that if the initial class satisfies the SToNE condition then the same
is true of the class of integrable functions.

To prove the completeness, let 0 <g<f and L(f)0. Since f(x) is positive for
all z, L(f) = F(f) = N(f). Since g<f we have N(g) < N(f) which implies that
F(g) = N(g)=0. Thus g is integrable.

Example 4. The integral constructed by BoURrBAKI [5] on a locally
compact space is a complete LEBESGUE integral when the functions are real
valued. ‘

Tt is easy to see from the theory that the space of integrable functions
is a linear lattice on which the integral is a linear functional. The positivity
of the integral follows from Proposition 1 of § 4 and the countable additivity
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from Theorem 5 of § 3 of Chapter IV. The SToNE condition follows by applying
Theorem 3 and Proposition 5 of § 4 of Chapter IV to f and f N 1. Proposition 1
of § 4 of Chapter IV yields the completeness of the integral.

Example 5. The integral generated by a volume v (as in [1]) is a
complete LEBESGUE integral. For a summable function f we shall show that
fN 1 is summable. There exists a basic sequence s, such that $a(2) converges
to f(x) v-almost everywhere. Then the sequence s, N1 is basic, because

”Sn-}'i N1— Sy N 1“ < ”Sn-i-l - 8n” .

Since s, N1 converges to f N1 v-a.e., f N1 is summable. The other axioms
of a complete LEBESGUE integral are obviously satisfied.

§ 3. - The volume generated by a Lebesgue integral.

A family V of subsets of an abstract space X is called a prering if for every
two sets 4, BeV the sets AN B and A\B can be represented as finite
unions of disjoint sets from the family V.

A non-negative function v defined on the prering V is called a volume if

for every countable family of disjoint sets 4,V such that A = GA,,EV,
© n=1x

we have v(4) = > v(4,). The triple (X, V, v) is called a volume space.
n=1

A volume v with domain V is called an upper complete volume if the
following conditions are satisfied:

(1) The family V is a ring, that is it is a prering satisfying the condition
that if 4, BeV, then AU BeV.

(2) For every increasing sequence of sets 4,V such that the sequence

9(4,) is bounded, we have GA,,GV.
=1

If in addition the pair of conditions AcBeV and »(B)=0 implies AeV,
then the volume is said to be complete.

It is easy to see that a volume v defined on a prering V is upper complete
if and only if the following condition is satisfied:

It 4,eV is a sequence of disjoint sets such that Z?)(A,,)< oo, then
GA,,EV.

n=l

n=1
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Theorem 1. If [ is a Lebesgue integral over X, then V= {AcX:
¢, € D([)}, where ¢, is the characteristic function of the set A, is a ring and the
function v defined on V by v(A)=[c, for AeV is an upper complete volume.
When the integral is complete, the volume is complete.

Proof. Let A,BeV. The domain L=D(f) of the integral being a
linear lattice, the following is true:

cup=¢,Jeel, oAnB:cAr\cBeL
and
Cos = CA‘*GAnBEL-

Thus V is a ring.
From the definition of the function v it is clear that it is finite valued

and non-negative. Now let 4,4,eV, A, disjoint and 4=U4,. Then
n=1

45 ¢, €L+, and

-]

> e, (@) = ¢, () < oo forallze X .
n=1

Also,
k k

> feu,=f 2 64, < Joa< o0 for all k.

==l a=1
This implies by the countable additivity of the integral that p(d) = > v(4,).

n=1

Thus @ is 2 volume. The countable additivity of the integral also implies the
upper completeness of the volume. When the integral is complete, the volume
is clearly complete. This proves the theorem.

We shall call the family V of the above theorem, the family of summable
sets generated by the integral and v the volume generated by the integral.

Theorem 2. If [ is a Lebesgue integral over X, then for every func-
tion f€ L = D([) and every a>0 the set A,={weX: f(z)>a} is summable.

Proof. Let feL. The sequence of functions f, given by
fn =/n,(f—~fﬁa,) N1
converges increasingly to the function ¢, . Since

fna=ala*fN1l)el,
the function f,eL.



34 M. M. MATTAMAL [6]

Now,
4, = {:70 e X: fHa) > (L}

where f+ is the positive part of the function f and therefore
a—1f+(m)>cAa(w) for all ze X .

Since f,<e¢, <a'ft, the integral of f, is bounded and, by the countable
additivity of the integral ¢ 4, € L. The theorem is therefore proved.

For a given LEBESGUE infegral [ over X, the subset 4 of X is called a
null set generated by the integral if fe,= 0. It is clear that the union of a
countable family of null sets is a null set and, when the integral is complete,
any subset of a null set is itself a null set.

A condition C(x) depending on the parameter z is said to be satisfied
f-almost everywhere ([-a.e.) on X if C(z) holds for all x¢ A where 4 is a
null set generated by the integral.

Theorem 3. Let [ be a complete Lebesgue integral over X and f a
finite valued function on X such that f(@)=0 [-a.e. Then feD(f) and [f=0.

Proof. We may assume that f is non-negative. Then f(z) =0 for zgE A,
where A eV, and V, is the family of null sets generated by the integral. For
>0, the set

4, ={zeX: f(z)>a}

is contained in 4 and, since the integral is complete, 4,eV,.
Define a sequence of functions s, by

Sy = z 2], (=1,..,47

3 3
where ;
B, ={weX: 27"j < flx)<2—(j + 1)} .
Then
B,,cd,n,eV,

and therefore B,;eV,, that is
¢, € D(]) and fes,=0.

This implies that
sn€D(f) and  [s,=0.

But s.(») converges increasingly to f(») for all € X. Hence by the countable
additivity of the integral fe D(f) and [f= 0.
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§ 4. - Representation of Lebesgue integrals.

In [1] is presented an approach to the theory of the space L(v, Y) of
BANACH-space valued LEBESGUE-BCCHNER summable functions generated by
a volume space (X, V, v). Here we shall consider the case of the space L(v, )
of real valued LEBESGUE summable functions.

The family S(V, R) of simple functions over the prering V is the family
of all functions f of the form

f=ri0+ o+ 70y,

where 7,€R, A,V and the 4, are mutually disjoint. The integral of f is
defined by

Jfdv= rio(dy) 4 oo A TE0(4s)
The functional on S(V, R) given by

Ifle={1fldv

is a semi-norm on S(V, R).
The subset 4 of X is called a v-null set if, given ¢>0, there exists a
countable collection of sets A4,€V such that

AcUA, and Sod)<e.
n=1

n=1

A condition C(») depending on a parameter & € X is said to be satisfied v-almost
everywhere (v-a.e.) if there exists a p-null set A such that the condition is
satisfied at every point of the set X\ A.

A sequence of functions s,e8(V, R) is called a basic sequence if there
exists a constant M > 0 such that, for n=1,2, ..., 85 — Sa—i]| < M4~ (Where
8, =0). The space L(v, R) of LEBESGUE summable functions is the set of all
functions f for which there exists a basic sequence s, convergent v-almost
everywhere to the function f. For such f we define

Iflo=lim|s.}, and  [fdv= lim fs,dv .

The space L(v, R) is a linear space and Ifl, is a semi-norm on L(v, E).
The functional [fdv is positive and linear on L(v, R). For details we refer
the reader to [1].
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Lemma 1. Let [ be a Lebesgue integral and v the volume generated
by [ on the prering V of summable sets. If heS(V,R), then heD(f) and
heL(v, R). Moreover, [h = [hdv.

Proof. S(V,R) being the set of simple functions of the prering V, ig
contained in the space L(v, R).

Let b=rc, 4 ...+ 716, , where 7,6 R and 4,;eV. By Theorem 1, keD(f)
and ‘

Jh=r0(d,) + ...+ r.0(4,) = (hdv .

Lemma 2. Let [ be a Lebesgue wntegral over X and v the volume gene-
rated by [ on the prering V of summable sets. Let J be a complete Lebesgue
integral over X such that [cdJ, that is D({)cD(J) and [f=Jf for all feD(]).
Let w be the volume generated by J on the preving W of summable sets generated
by J. Then N,c W,, where N, is the family of v-null sets and W, the family
of null sets generated by the integral J.

Proof. Let AeXN,. Then for ¢>0 there exists a sequence A,eV
such that

-+

A cyU An a:nd Z'U(An) < E.
A=l N==]
A, eV implies
6,,cD(f) and w4, =] ¢y, -
But since [cJ, this implies that 4,eW and w(4,) = v(4d,).

The sequence of sets C, =4, U ..U A4, is increasing and €, belongs to
the ring W. Moreover,

W(C) <w(dy) + ...+ w(4,) < e

and therefore by the upper completeness of w we get

B.=UAd,eW.
n=1

also

w(B,) < % w(d,) <e.
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Now, if we set & =1/n, then there exists B,eW such that AcB, and
w(B,)<1/n. It is clear from the upper completeness of w that the set

«©
B=nN23B, is a member of W. Moreover,

ne=l

0<w(B)<w(B,)<1/n for all n

which implies w(B) = 0. We have A cB where w(B)=0 and therefore by
the completeness of w, 4 €W and w(4)=0. This proves that N,cW,.

Lemma 3. Let [ be a complete Lebesgue integral and v the wvolume
generated by the integral. Then the family of v-null sets coincides with the family
of null sets gemerated by |.

This Lemma is an obvious consequence of Lemma 2.

Theorem 4. Let [ be a complete Lebesgue integral over X and v the
volume generated by [. Then D([) = L(v, R) and [f=[fdv for all f€D(J).

Proof. We shall denote D([) by L. The desired result will follow if
we prove that I+ = L+(v, R) and [f=[fdo for all feL+.
Take fe L+ and consider the sequence of functions

Sp= 2 27"jey,, (i=1,..,4")
i
where

B, ={weX: 2] < fl@)<2( + 1)} .

Let V be the ring of summable sets on which the volume v is defined.
By Theorem 2, the set
{we X: 27"] < f(=)}

belongs to V and hence the set B,; belongs to V. This implies that s, € SV, R)
and therefore, by Lemma 1, s, L+ and s, = [s,dv.

The sequence s, increasingly con\}erges everywhere on X to fe Lt and
[s.< [f for all » which implies, by the countable additivity of the integral {s
that [s, converges to [f. Since s, e L+(v, B) and [s,dv< [f, we get from theo-
rems 4(d) and 1(2) of [1] that fe (v, B) and

{fdv=1im {s,dv=1im [s,.

Thus we have proven that L+c L*(v, R) and [f=[fdv for feL*.
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Now take any fe L*(v, R). From the definition of the space L(v, R) there
exist a sequence s, € S*(V, R), a constant M > 0, and a v-null set A such that
sa(®) converges to f(z) if s€ X\ A4 and [s.|,<M for all n.

Since the integral [ is complete, we have by Lemma 3 that A eV and
v(4) = 0. This implies that ¢, e 8(V, R) and

hy=(1—¢,)s8,€ 87V, R).
By Lemma 1, h,eL and
Jhp=[h,dv< s, do< M for n=1,2,....
Set gun = hm N ...k, for n>m. Since L is a lattice Ian €L, and
S @< [ < M for m=1,2,...

The sequence of functions g,, converges decreasingly, as # goes to infinity,
to the function g,,, where

In(@) = {inf h,(x): n>m} for all ze X .

Since 0< [¢n.<HM, by the countable additivity of the integral, g,,e€ L and
[gu<dM for m=1,2, ...

Let g=(1—c¢,)f. Since h, converges to g, it follows that gn cOnverges
increasingly to g, so that ge L. Since ¢ J(@) = 0 [-almost everywhere, by
Theorem 3, ¢,fe L and therefore fe L. This proves the theorem.

In the following theorem, for a given measure 4 we shall denote by 3 (u, r)
the space of real valued measurable funetions and by L(u, R) the space of
real valued summable functions generated by e f fdu will denote the integral
of f with respect to u.

Theorem 5. Let | be a Lebesgue integral and v the volume generated
by f. Let u be the measure with smallest domain extending the volume v. Then,

D(f) = L(u, R) =L(v, B) N M(u, R) and Jf=[fdu=fdv for all f € D(J).

Proof. Let v be defined on the ring V of summable sets generated by [.
It follows from the results of [3] that the measure with smallest domain exten-
ding v is defined on the sigma-ring

M={A: A=uUA4,, A,eV}

neal
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by the formula
u(4d) = sup {v(B): Bc 4, Be v} for AeM

and that the finite part of u is v, that is the family of sets {AdeM: p(Ad)< co}
is V, and o(4) = u(4) for all AeV.

By theorem 2 of [4], L(u, R) = L(v, B) N M(y, R) and [f= {fdv for all
feIL(u, B). In order to prove the theorem we only have to show that

D+(f) = L*(v, B) N M+, B)

and
Jf=[fdv for all feD*(().

Take any jeD*H([). The proof for showing that fe Lt(v, R) and [f=
= [fdv is exactly the same as in Theorem 4. To prove that fe M+(u, B) we
have to show that for any a>0 the set

A, ={weX: fl®)>ate M.
By theorem 2, A,€V. Since Vc M, we have A.e M. Thus

D+(j') c I, B) N MH{(p, R)
and

ff::ffdv for fe D™([).

Now take any fe L+(v, B) N M*(u, R). Since fe M*(u, R), by lemma 1
and lemma 2 of [4], there exists a sequence s, € STV, R) increasingly con-
vergent everywhere to the function f and such that {s,dv< ffdv. By lemma 1,
s,€D*(f) and

[s,=[s,dv< [fdo,

which implies by the countable additivity of the integral that fe D*([).
This completes the proof of the theorem.

In a subsequent paper we shall extend a non-complete integral to a
complete one and find a representation for the completion.
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