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ToaNn Por (%)

Torsional Oscillations of a Porous Infinite Disk

under a Circular Magnetic Field. (**)

1. - IntroducHon.

Recently Pao [1] has studied the boundary layer flow of a viscous, incom-
pressible and electrically conducting fluid over a rotating infinite disk in the
presence of a uniform circular magnetic field. He has carried out his analysis
for the steady flow. One physical interest in this flow lies in the possibility
of using such a field to shield a rotating body from excessive heating.

We have here considered the following problem. A homogeneous, viscous
and electrically conducting fluid are in motion over an oscillating porous infinite
disk. There is no magnetic field in the distant fluid, but, in the boundary layer,
there is an oscillating field in the tangential direction, generated by external
means within the disk ifself. We have solved the problem by expanding the
velocity components in powers of the amplitude oscillation (¢) of the disk.
Analytical expressions for velocity, induced magnetic field and current density
are obtained as a function of three parameters. The first approximations
give only a transverse velocity and a magnetic field which vanishes outside
the boundary layer. The second approximations give a radial and an axial
velocity component each consisting of a steady and an unsteady part. The
steady part of the radial velocity through vanishes at large distance from the
disk shows a secondary boundary layer, the thickness of which becomes
infinite as the suction parameter & tends to zero. Graphs showing variation
of velocity and steady outer flow are plotted.

(*) Indirizzo: Faculty of Mathematics and Mechanics, University of Cluj, Cluj,
Romania.
(**) Ricevuto: 5-X-1971.
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Similar types of problems with or without the hydromagnetic interaction
have been considered in the papers ([2] to [8]).

2. - Equations of motions.

The basic equations governing the unsteady motion of incompressible,
viscous and electrically conducting fluids in the presence of a magnetie
field are

v

(1) =+ @V = = VP (V) H + »dv,
@) V=0,
o = =
(3) a—t—Vx(va)zvaH,
— — — —>
(4) j=VxH, V-B=0, VxE=0,

—

where 5 is the fluid velocity vector, j the normalized current density vector,
B the magnetic induction vector, % the electric field vector, v the kinematic
viscosity, », = 1/(u.o) the magnetic diffusivity, ., the magnetic permeability
and o the electrical conductivity, We have written H=1H {nfo)t and P=
= H?/2 -+ P,/p where ﬁl is the magnetic field vector, P; the fluid pressure
and ¢ the density. In the derivation of (1) and (3) it is assumed that the net
charge density is zero and that », ¢ and u, are constant.

Let us consider the flow over oscillating porous disk in a fluid otherwise
ab rest. In addition, an axial electric current of density J, is imposed at the
disck. Equivalently, the oscillation tangential magnetic field component is
imposed at the disk. The cylindrical polar co-ordinates (v, 0, 2) with the
rotational symmetry of the problem (i.e., 9/00 = 0) are used. With (u, v, w)
and (o, h, o) denoting the components of velocity and of magnetic field strength
in the direction of the coordinate lines, the governing equations (1) to (4)
become

5 ou ou du  v? P g* . %
) AT H e T T T, P VYA
6 ov v v ov . v

(6) a%‘u —a;—}—; +’waz-—1’ V==

7 ow ow w o .

M BTl TV T T TV



£31

(8)

9

where

TORSIONAL OSCILLATIONS OF A POROUS INFINITE DISK...

oh | d(uk) = o(wh) . h
55—*. or + o2 —vm(V h—-;; ’

o(ru) o(rw)
or oz

:0’

02 10 02
Vi= koo +

ot L ror | oet

The boundary conditions can be written as

(10)

% =0, v = Re (ro exp (i)
W= — W, , h = Re (rL2 exp (¢11))
w0, v->0, h -0

at 2= 0,

as 2 —» 0o,

where w, is the velocity of suction, A the frequency of oscillation, w the char-
acteristic angular velocity and Q= (u./0)"(J,/2) = const. the corresponding
characteristic angular magnetic field strength.

We assume the velocity components, the circular magnetic field and the
pressure to be of the following form

(11)

w
P

w=rol'n, 1), v=r06(,71),

2vwP(n, T),

= —wy, — 20(2v| ) F(y, ©), h=rQH(, ),

where 2z = (2v/A)"%n, v = At and prime denotes differentiation with respect to 7.
By substituting the expressions (11) in the equations of motion (5) to (8)

we have
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where ¢= o/ is the amplitude of oscillation of the plate, 2= Q/w the ratio
of the ALFVEN velocity to the fluid velocity at the disk and o« =/, the
magnetic PRANDTL number.

The boundary conditions (10) reduce to

F=F=0, G = Re (exp (ir)), H = Re(exp (ir)) at 5=0,
(16)
-0, G0, H—>0 as 7 — oco.

The equations (12) to (14) together with the boundary conditions (16) are
sufficient to determine the functions 7, @ and H and then the equation (15)
on first quadrature will give P.

3. - Solution of the governing equations.

The problem now reduces to the solution of the differential equations (12)
to (14) subject to the boundary conditions (16). On the assumption that the
amplitude of oscillazion & to be small, we attempt the solution of these
equations by expanding F, G and H as

1,7 = S eri ),

(17) 3 Gy T) = fS"Gn(m ),

N

H(n, 1) = Za"Hn(n, 7).
n=0

We shall assume the suction velocity at the disk to be large in comparison
with the inflow due to centrifugal effects. This assumption requires

Wy >>
m— &
Vi~

which. for a given amplitude of oscillation is satisfied for either large values
of suction or for low values of frequency.

Substitution of the expansion (17) into the fundamental equations (12)
to (14), and neglect of terms quadratic in ¢, leads to the following three param-
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eter linear partial differential equations set

aF, " 1 11
(18) E‘o_klﬂozéﬁlo)
aG, 1,
(19) E_‘[— — kGy = 5 Go ,
oH, 1,
(20) o (*5; - 7‘7Ho) =3 H,;
aF; Iy a " o 5 17 1 "
(21) 5y + 7 —G5—9F0F0+,8~H5—k11’0=—21r’1 )
aG 7 ! 1 i
(22) a—:—)— Z(FOGO——FDGO)——kGlz—z— &,
aH ! 1 ‘4
(23) o (a—; — 2f, H' — kHo) = H,

where k= w,/(2v2)} is a positive constant which determines the effect of
suction.
The boundary conditions (16) reduce to

F,=TF,=0, G =Re(exp(ir)), H,= Re (exp (ir))
asn =20,

(24) | Guu=Hpy =0

F >0, G,->0, H,—>0 at y—oco.
Primary flow. Solving (18) to (20) we have
Fom,7) =0,
(25) Go(n, T) = exp (— (k + a1)n) cos (v — bi7) ,

Hy(n, T) = exp (— (ak + a,)n) cos (v —by7) ,
where

VIR A+ k)% VR E— k)%
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Secondary flow. Now substituting (25) into (21) we obtain
— — - exp (— 2(k + a,)n)(1 + exp (2i7)-exp (— 2ib, 7)) —

(26)

. - " 1 I
-3 B2 exp (— 2(k + a,)n)(1 4+ exp (2it)-exp (— 2ib,n)) — kI = 5 ',

with the boundary conditions

270 F(0)=F,0)=0, Fy(c0)=0.

From equation (26) we can see that the solution of (26) can be expressed as
(28) Fi(n, 7) = f1(n) + Re[f.(n) exp (2i7)],

where f,() and f,(n) are determined by

1 111 1 1 1 o
(29)  3f B =—gexp (—2(a + k)n) + B exp (— 2(a. + k) n)

1 yis i . 2! 1 -
Efz + kfz + 2”2 = ""2 exp (" 2(k + a, + ﬂh)’?) -

(30) — % B2 exp (——— 2(k + a, + 1b,) 77) ’
with

(31) 11(0) = £1(0) = £(0) = f,(0) = 0,  f1(00) = fo(c0) = 0.

Only the steady component, f,(n), is considered here because a solution
of (30) which satisfies all the boundary conditions may be found even for
k= 0. Thus the solution of (29) can be written as

1 1 5
fon Tt {— ay(ay -+ k) exp (— 2(a, + ¥)y) + PR exp (— 2(a, + k)7n) +
1 Fitd
- (“1(“1 + k) aylay+ k)) exp (— 27677)} ,
ﬂ‘&

- exp (— 2(a, + k)n) —

1 1
filn) = 3 {m exp (— 2(a, + k)7n) T ey o

_1 ! P _ l_r __F
k(al(a,l—{— k) az(a2+lc)) exp 27“7)+1’c((a»1+k)2 (as + W)}'
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4. - Discussion.

The dimensionless transverse velocity and the dimensionless circular mag-
netic field are illustrated against » in Fig. 1 for different values of the suction
parameter & and magnefic PRANDTL number «. The continuous curves in
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Fig. 1. — Tangential velocity and magnetic field profiles.

these figures represent for selected times, the functions (G;—cost) and
(Hy—cos ), and the vertical straight lines are the values of cosz at the
relevant times. It is observed that the velocity and the magnetic field decrease
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as the both suetion and the magnetic PRANDTL number increase. This is what
we expect physically, since the effect of the suction is to retard the flow.

05 10 15 20 25 30 %

Fig. 2. - Steady radial velocity profiles for k= 1.0.

The steady parts of # and w up-to second order of approximation in ¢
are given by (denote by u, and w, respectively)

wy= rwef,(n),  ws+ wo = — 2we@r[A) " f1(n) .
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The graphs of steady components of radial and axial flows are plotted
against # for the suefion parameter k¥ =1.0 and for various values of «
and 8 and ave shown in Fig. 2 and 3. It will be found from these figures
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Tig. 3. — Steady axial veloeity profiles for k= 1.0.

that the magnitude of the radial velocity decreases rapidly and so becomes
negligible outside the boundary layer and that of the axial velocity tends to
a finite negative value for large values of #, which is required for continuity
of the flow. Also the maximum values of the steady radial and axial velocity
components are found to decrease with the increase of the magnetic field.

It is noted that in the special case of « =1 and f=1 the radial and
axial flow are zero. Therefore for each value of the suction parameter k there
are critical values of the pair («, ) above which no steady flow is possible.

The steady inflow as 17— oo due to the oscillations can be expressed as

Ws oo Wy 1 1 p?
2t /9,0 8k |(a,+ k) (aw + B)2]

This quantity is displayed in Fig. 4 for various values of k, « and f. It is
clear .that the inflow due to the oscillations decreases as the wall suction

11
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increases. The solution is, of course, singular as %k — 0. This happens due
to the fact that we have neglected the conveetive part of the inertia force as
compared to the centrifugal one, which is not justified at a large distance
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Fig. 4. — Steady axial flow.

from the disk. It is also observed that the steady flow decreases as « and

increase.
Another interesting feature of the flow is the distribution of the electrical

eurrent density which is given by

jo = — (ofp)¥ 22 = — (Tof2) oo, 0
jo=10,

. 1 o(gr
J: = (olum)% - —(a%l = JoH(r, 7),

where (j,, jy, j.) are the components of the current density in the (r,0,2)
directions. The current density is zero at a great distance from the disk.
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where
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The tangential component of the viscous shearing stress at the disk is given by

5 ——
Tap == Q’V(—v) = — gre # 4 cos (t+9),
92 ) 509 2
A= Vg, F )+ b2 = g1 by
(@ + k)* + b%, Y g otk

The transverse shearing stress has a phase lead over the oscillation of the

disk and this lead decreases with increasing suction.
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Summary.

The flow of a viscous, electrically and conducting fluid due to an infinite porous oscillat-

ing disk in the presence of a circular magnetic field, is considered. The derived fundamental
equations are solved by an expansion method in power series of the amplilude of oscillation
of the disk. Nwmerical results are given for ihe welocity profiles, magnetic field, skim-
friction and steady inflow.
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