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GHIRDARI LAL FOTEDAR (%)

On one sided quasi-inverses. (**)

1. — It is well known [1] that if an element of a ring has more than one
right quasi-inverse (r.g.i.) then, it has infinitely many r.q.i.’s. The object
of this paper is to derive this result by a simple set theoretic argument and
to find a formula giving all the r.q.i.’s of an element when one of them is
known. We also obtain some properties of a ring with an element having more
than one r.q.i.. In particular we shall show that such a ring admits an isomor-
phism into itself. We also obtain an infinite set of orthogonal idempotents
constructed by JACOBSON as a particular case of our method. Incidently we
also show that the ring contains an infinite set of elements whose squares
vanish.

2. — Let a, b be two elements of a ring B such that acb=0z£boa so
that b is a r.q.i. of a but not aleft quasi-inverse, where v oy = 2 + y — ay for
all #, ¥ in R. Let, S={teRla-t=0}. Then S8 is obviously non-empty.
Let ¢ be the mapping of R into itself defined by

(2.1) @) =b-—=zca.
Then we have,

Theorem (2.1). ¢ is a one to one map of R into a subset of itself such
that 8 is mapped into a proper subset of itself.

(*) Indirizzo: U.G.C. Junior Research Fellow, Faculty of Mathematics, University
of Delhi, Delbi - 7, India.
(**) Ricevuto: 21-IIT-1972.
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Proof.
p) = @) =>zca =12 oa

circling both sides on the right by b, we get z =2'.
Let 2z 8. Then,
ao(b— (zoa))=aob—ao(zoa)+ a=—(202)cat+a=0
so that ¢(2)e 8. Obviously b ¢ @(S), since there is no ze R such that, z.¢=0.
Corollary. The set 8 is infinite.
3. — We shall now obtain all the r.q.i.’s of «, given one of them, say b.

Lemma (3.1). If w 48 any element of a ring R, then the general solution
of the equation

(3.1) Uol = UY
18 given by
(3.2) r=ur—u, Y= Uoz,

where z is arbitrary in R, and distinct values of z give rise to distinct solutions.

Proof. Writing the equation o2 = uy in the form % -+ 2 = w(w -+ y) and
denoting =+ y by 2, it follows that any solution must be of the form (3.2).
Conversely, if # and y are given by (3.2), then
CUox=1Uo(Us— U)=UF UL — u — U2 + U =

= w2+ ¥ — ug) = u(uoz) = uy .

Now suppose that for some 2,2’ € B, ue —u=wuz'— 4 and 4o z2=1uo.2. Adding
the corresponding sides of the two equations we get 2= 2'.

Theorem (3.1). If b is a solution of the equation,

(3.3) aow=20,
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for a given ae R then, w=>by -+ x, where © and y are given by (3.2) for any
2€R and w=a. We observe that w may also be written in the form,

(3.4) W=2+b—(boaoz).

Proof. If w=by- w, where x and y arve given by (3.2) for any #z in R
and %= a then,

GoWw=ao(by 4+ 2)=0a-+ by + 22— aby — ax =

= (acx)+-by—aby=(a+b—ab)y= (aob)yy=20.

Moreover,
w=">0y 4 x=>0(acz)+ (ar — a) =
=4 (acg)—bol(aoc2)+ (a2—a—2)+2=b+ 22— (boaoz).

We now show that if w is any solution of (3.3), then w can be put in the
form (3.4). In fact we have only to take z=— w so that

b+w—(boaow)=b+w—>b=w.

We shall now give some deductions from Theorem (3.1).
1) If the equation (3.3) has a unique solution b€ R, then b is also a
solution of ¢ca =0, so that a is q.ri.
Proof. By hypothesis w=1> for all ze R, so that 2=bocaoz. In par-
ticular taking 2= 0, we get boa= 0.

2) Conversely we have, if boa=0, then w=2-+b—2="5 for all ze R,
so that b is the only r.q.i. of a.

3) The infinite number of r.q.i. of ¢ of the form, &— boa° 4+ qo1,
k=1,2,.. where for any v R, 2°" =z c2°* 1, for n>1 and 2°°= 0 obtained
by Jacosson [1] can be obtained from (3.4) by putting 2= g1,

Lemma (3.2). If w is any solution of (3.3) of which b is a given solution
then,

(3.5) woa = (boa)(zoa),

for some ze€ B; and conversely, (3.5) gives a solution w of (3.3) for any z < R.
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Proof. Circling both sides of (3.4) by a on the right we get
Wod=boa-}2oa—(boaogoa)= (boa)(zoa).
Conversely cireling both sides of (3.5) by b on the right we get
{boa)zoa)ob={(Doa)+ (oa) — (boa)o(2oa)}ob =
={b+2z—Dboacz)oa}ob=Db+2—boacr)=w.

Lemma (3.3). If u,z, 2 €R, then

(3.6) (Zou)(@ ou) = (¢" ou),

where,

(3.7) =2t 2 — (Zouoz).
Proof.

(ou)(2 ott) = (Rotw) 4 (&' o) — (ou)o (R cwt) =
=g+ 2 — (gouct)}ou=12"ou.

Lemma (3.4). If w is a solution of (3.3) for some z€ R then, for any ue R
{(3.8) (oa)woa)= (woa).

Proof. Taking 2’ = w, 2=« in (3.6) and (3.7) and u=a we get

(zoa)woa)=f{u-+ w— (Wotow)}oa = (woa).

Corollary 1. (weoa)*= (weoa), for all solutions w of (3.3).

Proof. Take u=w in (3.8).

Corollary 2. If w and w' are any two solutions of (3.3) and
(3.9) z= (woa) — (W oa),

then z?=0.
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Proof.

2= {(woa) — (W oa)}? = (Woa)— (woa)w ca)— (W oa)weoa) -+ (W oa)
= (weoa)— (w'oa)— (woa) + (woa) (by (3.8), Cor. 1)
=0.

Lemma (3.5). If w' = (¢') corresponding to 2’ € R and w" = (2") corres-
ponding to 2" € R are two solutions of (3.3) then

(3.10) w— w' = (boa)(z — 2").

Proof. From (3.4) we have
w—w= (@ —2")—{(boace)— (boaoz")} =

= (@ —2&")—{—(boa)e' 4+ (boa)e" 4+ (' —2")} = (boa)(r' —2").

Corollary. If N is the right ideal in R defined by N = R(boa) then the
elements in the same coset of N in R give rise to same solution of (3.3) and elem-
ents in the distinct cosets of N in R give rise to distinct solutions of (3.3). Also
ke index of N in R is infinite.

Proof. This follows from Lemma (3.5) and Theorem (2.1).

4. — Theorem (4.1). The mapping X;: RR,4,§=1,2, ... defined by
(4.1) Xi5(2) = 0% ozoa®— b oq®
is an isomorphism of (R, ) into (R, -}-).

For i =14, X,(2) is an isomorphism of (R, ., ) into (R, ., ).
If B has identity 1 then, 1 — 5% .a° is the identity for X, (R).

Proof. We observe that

(1 —b)ie(l —ay = (1 — b)Y (1 — (1 —2))(1 — @) =
=1 —by(1l—a)y— (1 —b)(l—2)(L—a)y=(1—b%oa%)—

— (1 — D% 0z0a%) = b%ozoa® — b%ca% = X,(2).
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Hence
Xife +2') = 1 —b)iz+ &)1 —a) =

= (1 —0)'2(1 — a) 4 (1L — b)I2'"(1 — a) = X ;5(2) + Z(=") .
Obviously X(#) =0 for 2= 0. Conversely if X,;(z) = 0 then

0=(1—a)X;e)1—0Y=c¢.
Thus X,; is an isomorphism of (R, --) into (R, +). Since X,(R) does not
obviously contain the element b°¢ca®, it follows that %, maps R into a
proper subset.
For i=14, we have
gul@r) = (1 — b)i(ee)(1 — a)' = (1 — D) (2(1 — @)’ (1 —b)i2')(1 — a) =

= ((1 = D)'a(1 — a)')((1 — b)'e' (1 — a)) = Zu(2) Xu(2') -

Thus %, is an isomorphism of (R, ., +) into (R, ., -). Finally if 1eR,
then 1 —5%0a° = (1 — b)Yl — a)’ is the identity for X, (R), since

(1— b)ie(1— a)i (1— b)i (1—a)! = (1—b)iz(l—a)i = (1— b)i (1—a)i (1—b) 2(1— a)?

Remark 1.
Zis@) Xl2') = X,(2(1 — a)i—*2'), if j>k,
= Zo(e(l — by—ie'), i j<k.
Hence,
Zis@) Xa((boa)z') =0, ifj>k,
Zifaboa))Xu(z) =0, if j<Ek,

Xis(@) Xp((boa)e') = Zi(a(boa)) Xule'),
= Zu(2(boa)2’),
Xii(2(boa)) X((boa)*2') =0, if %k,
= Zu(2(boa)?'), Hiji=1rk.
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In particular, taking 2= %= woa with we 8, we get
Liboa)Xlwea) =10 if j=k,
= Zy(woa) for j=15%.

which reduces to Jacosson’s result [1] for w=2>.

Remerk 2. If R is a ring and a, b € R such that ab—=1s%ba. Then
by KAPLANSKY’s result ¢ has an infinity of righ inverses. The general formula
for all the right inverses of & will be, w =24 b— baz where 2z is arbitrary
in B and aw=1. Here again we observe that % ,: R — R such that ¥ ;(z) =
= biza’ is an isomorphism of (R, +) into (R, -+) since 1¢ X,(R) and for
i=17, it is also true that %, is an isomorphism of (R,., ) into (R,., +)
and that biaf serves as the identity for X, (R).

5. — Let aob=0%boa, for a,beR. Let S={weR|aocw=0}. Let K=
= {#goa|2eR}. Then by Lemma (3.3) K is a semigroup. Let R’ be the
subring of R generated by the set I{. Then

B ={a= (3 n(x, 2)(zca)) € Rn(x, 2) = 0

ZER

for all but a finite number of z€ R, n(x, 2) being an integer}.
Let,
T={f= (woa)— (woa)|w, wel}.

Then the subring .D generated by 7T counsists of linear combinations of the
element fe . It is clear from (3.8), (3.9) and (3.10) that D is an ideal
in R’ and that D?= 0.
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