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On unsteady non-Newtonian flow in a rotating system

in the presence of a uniform magnetic field. (¥%)

1. - Introductiomn.

Debnath [1];, {1], has recently initiated the study of an unsteady hydro-
magnetic boundary layer flow in a Newtonian rotating fluid in the presence
of a uniform magnetic fleld. The configurations involved in these problems
were (i) a semi-infinite expanse of Newtonian fluid bounded by an infinite
rigid insulating disk and (ii) a laterally unbounded fluid between two infi-
nite parallel insulating disks, when both the fluid and the disk (s) are in
rigid body rotation with a constant angular velocity. The unsteady flow was
generated in both the configurations by imposing non-torsional or torsional
oscillations of the disk (s) with a given frequency. The exact solutions of the
problems have been determined explicitly and the structure of the associated
hydrodynamic and hydromagnetic boundary layers were investigated in detail.
The analysis revealed the existence of Ekman-Hartmann and Stokes-Bkman-
" Hartmann boundary layers on the disk (s). For the problem of torsional
oscillations of a disk in the Newtonian fluid, the total time scale involved for
the establishment of quasi-steady boundary layers and the hydromagnetic
Ekman suction velocity were exactly calculated. The significances of these
results for the attainment of the hydromagnetic boundary layers and for the
hydromagnetic spin-up mechanism were discussed. It has been shown that
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the interaction of the electromagnetic and Coriolis forces, and the Ekman
suction velocity have some distinctive role on the structure of the boundary
layers and the hydromagnetic spin-up mechanism.

Based on the Walters rheological equations of state for a class of non-
Newtonian fluid, Basu and Debnath [2] have investigated the unsteady problem
of non-torsional oscillations of a disk in an incompressible, homogeneous visco-
elastic fluid in a rotating coordinate system. The unsteady velocity field for
configuration (i) has been calculated explicitly, and the structure of the asso-
ciated boundary layers has been determined. The analysis has provided the
existence of Stokes-Ekman-Elastic boundary layers on the disk. It was
shown that in the absence of the elastic parameter, the results of the work
are in accord with the corresponding results of an uniformly rotating New-
tonian finid.

It appears that the flow generated in a semi-infinite electrically conducting
visco-elastic fluid in the presence of a uniform magnetic field by the non-tor-
sional oscillations of an infinite disk may be of considerable interest in geophys-
ical and rheological problems. It is thus natural to initiate some theoretical
work with simple geometfrical configurations before it can be applied and
extended to problems of geophysical and rheological interest and to a more
general physical configuration.

The present paper is based upon the rheological equations of state for a
class of elastico-visecous fluid B and is essentially concerned with the study
of the unsteady hydromagnetic boundary layer flow in an electrically conducting
elastico-viscous fluid in the presence of a uniform magnetic field. A semi-
infinite fluid is bounded by an infinite plate and the unsteady flow is generated
by the non-torsional oscillations of the plate. The initial value problem is
solved by the operational calculus of Heaviside.

This analysis is aimed at finding some qualitative and quantitative infor-
mation about (i) the unsteady velocity distribution, (ii) the existence and
structure of the associated Stokes-Ekman-Hartmann-elastic boundary layers
on the plate and (iii) the significant interaction of the Coriolis, hydromag-
netic and elastic parameters. It is shown that there exists a combined Stokes-
Ekman-Hartmann-elastic boundary layers which remain bounded for both
resonant and non-resonant cases. Attention is given to the behaviour of the
transient solution for sufficiently large ¢. The surface traction at the plate is
calculated in a closed form and its general features are discussed. Several
particular results are recovered as special cases of this analysis.

2. - The constitutive equations of state, motion and continuity.

Walters [3], formulated the rheological equations of state for the visco-
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elastic liquid B’ which are

(2.1) P = — DY+ p;k ;
12
o i a 13
2.2) Pilw, 1) =2 f Wa—1) = = exp[(Lmrl(a, ) 2",

where p,,. is the stress tensor, p is an isotropic pressure, g, is the metric tensor
of fixed coordinate system z%, p,, is the reduced stress tensor, #'¢ is the posi-
tion at time #' of the element which is instantaneously at the point z* at
time ¢, ¢ is the rate of strain tensor and

-]

(2.3) Pit—t') = fN(T) expl:——(t_;tl)] dr,

T

0

N(7) being the distribution function of relaxation time <.
The Oldroyd rheological equations of state [4] for liquid B

. 6 . 3 .
(2.4) (:p””r A,y ’) = 21 (eXp [(1)ik] + 4, 5, exp [(l)zk])
is a special case of the Walters liquid B’ when

(2.5) N(z) =1, (j—j) 3(z) + 70 (i—‘—l) S(r—24y)

2

is substituted in equations (2.2) and (2.3), where d(t) is the Dirac function
of time t, 7, is the coefficient of viscosity, 4,, 4. (< 1,) are the relaxation
and the retardation times respectively, and J/J¢ represents convective deriva-
tive of a tensor quantity in relation to the material in motion. The convec-
tive derivative of any contravariant tensor «% is

o] bl datt  ovF ovt

— @ = — at¥ pm —_
(2.6) (% ot —{- amm amm awm

where v* is the velocity vector.

The constitutive equations for the Newtonian liquid and the Maxwell
liquid follow from (2.4) when A, = 4, and 4, = 0 respectively. The Newtonian
liquid is also given by N(t) = 1, (7).
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Walters [8], has also proved that for liquids of short memory (that is,
short relaxation times), the equation of state has the simplified form

o
Pt = 2y, exp [(1)ik] — 2k, — exp[(1)ik]
K 5 '

—
Lo
-1

~—

«©

where 7, = [N(7)dv is the limiting viscosity at small rates of shear and k, =
(=] [}

= [tN(7) dr.
1]
Equations (2.1) and (2.7) constitute the equations of state for a class of

liquids called « the Walters liquid B” ».
For Oldroyd’s liquid B, %= 1,(4,— 4,) so that (2.7) reduces to

i . ;0 .
2.8) P'% = 210 exp [(1)ik] — 210 (la— 1) 5, 0xD [(1) k]
In view of equations of state (2.1) and (2.7), the equations of motion and
continuity in a rotating coordinate system can be written in the form

0 1
(2.9) §+4wvw+QQXv=—VP+ijB+vvw~

i[5 Vot 20 D Vo — Voo e

(2.10) divo =0,

where §2 is the rotation vector, P is the pressure including the centrifugal term,
v=1),/p is the kinematic viscosity, j is the current density, B is the total
magnetic field, %, = k/o is the coefficient of elasticity and o is the density

of the liguid.
Neglecting displacement currents, the Maxwell equations and the gen-
eralized Ohm’s law are

2B
(2.11) divB =0, curl B = uJ, curl £ = —2
(2.12) j=c(E-+vxB),

where E is the electric field, x is the magnetic permeability and ¢ is the elec-
trical conductivity of the liquid.
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3. ~ The initial value formulation.

We consider the unsteady motion engendered in a semi-infinite, incomp-
ressible, electrically conducting Walters liguid B’ bounded by an infinite
rigid plate at z= 0. Both the ligmid and the plate are in a state of rigid
body rotation with a uniform angular velocity £ about the z-axis normal to
the plate. A uniform magnetie field B, = (0, 0, B,) parallel to the z-axis is
applied to the rotating system. We examine the unsteady hydromagnetic
flow due to an elliptic harmonic oscillations of the plate in its own plane.

We take the rectangular cartesian coordinate axes (z,y, #) such that the
@, y axes lie in the plane of the plate. We seek a solution for the two dimen-
sional flow field v so that it depends on z and 7 alone.

Making reference to work of Debnath [1],-[1], based on the assumptions
of small magnetic Reynolds number and negligible induced magnetic field,
it turns out that the convective non-linear term in (2.9) disappears automa-
tically. Consequently, the basic field equation for w(z, ) assumes the form

cv
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where n* = (0/p) B} represents the hydromagnetic parameter and has the same
dimension as v, and k is the unit vector parallel to the z-axis.

We assume that the superimposed oscillations of the plate are given by
(3.2) u -+ v = Uf{1) on z=0,1>0,
where U is constant and has dimension of velocity, f(z) is some physically

realizable funetion of ¢, and u, » are the components of the velocity field.
As there is no disturbance at infinity, the boundary condition there is

(3.3) w0 as 2—co, t>0.

The initial condition of the problem is

3.4) u-+iv=20 at t<0 for all 2> 0.

4. - The solution of the problem.

For convenience, we introduce non-dimensional variables 2/, ¢/, u’, v' de-
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¥
V=0, («,v)=—=(u,v), where D= (}}) .

In terms of these quantities, equation (3.1) can be written as, dropping
the primes,

0 o2 0% |

(4.‘1) gt‘_@ U—{"]CM—‘}—ZICX’UT?Z’U:O,
where

kg
(4.2), k= s
and

n* ¢ B

(4.2), %—EZEE‘,

In terms of a new notation ¢ =« | v, equation (4.1), the boundary and
the initial conditions can be written as

2 o 23¢q .
(4.3) (a"t"a;z) @+ kgt (et 20)g=0,
(4.4) = f(t) on z2=0,7¢>0,
(4.5) q—0 as z—>oco0, t>0,
(4.6) | qg=0 at t<0 for all 2>0.

To determine the principal features of the flow field and the structure of
the boundary layers, it is of interest to consider the following cases:

(1) f(t) = a exp (iw't) + b exp (—iw't), (i) f(¥) = exp ({o't—m't),

where a, b are complex constants, m’'=m/Q2 >0, and «'= ©/f2 is the non-
dimensional frequency of oscillations. As before, we shall drop the primes.
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The initial value problem can readily be solved by means of the Laplace
transform defined by the integral [5]

(4.7) T 5) = | expl—stlqle t)dt .

In view of this transform, the solution of (4.3) subject to the boundary
and initial conditions can be expressed as the inverse Laplace integral

o4 io0

1 - 1
(4.8) q(z, 1) == o f 1(s) (1 -5 slmnz) exp (st —m,2) ds,
where ¢>0 and m;= (s-+n-+20)%.

Making reference to the table of the Laplace transform due to Campbell
and Foster [6], the inversion complex integral (4.8) can be evaluated exactly
and the solution for case (i) is given by

(4.10) 41t = gexp [iwt] [(1 —--; A 60752) exp (— A,2) erfe (5:7‘2“ A W) +
i i Z
4+ (1 + 3 A colcz) exp (4, 2) erfe (m+ A W)] +

+ g exp (—twt) [(1 - gwlz kz) exp (— Ay 2) erfe (5—57—2— 22\/2) -

+ (1 —;. Whs kz) exp (4,2) erfe (—i + 22\/—5”—!—

51
Ik{a + D)2 22 N 22
-+ T (l ——2}) exp (— 2zt——4§) -+

k2w

+ m(b——a) exp(——zzt—ﬁ) y

where

(4.11), h={n+i2+ o)}t =2+ ) a+if),

(4.11), Ay ={n+i2—)}* = (2 —w)4a—if).
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‘With

ki

4 o)

bl

w={(p*+ %4y},  p={+L%—y}%k, V=05
and erfe (2) is the usual complementary error function defined by the integral [5]
(4.12) erfe () =1-—erf (v) = # f exp [—0%]d0.
T

Solution (4.10) describes a general feature of the unsteady boundary layer
solution in a non-Newtonian rotating fluid in the presence of a uniform ma-
gnetic field.

It is worth noting that the effects of the Coriolis, hydromagnetic and
elastic parameters are reflected on solution (4.10). In the absence of elastic
parameter k, the velocity field (4.10) reduces identically to that obtained by
Debnath [1],. In particular, when w =10 and a-+ b==1 without any external
magnetic field, result (4.10) becomes identical with that of Puri and Kulsh-
restha [7]. '

In the asymptotic limit ¢— co, the wultimate steady state solution can
readily be recovered from (4.10) by using the asymptotic representation of
the complementary error function and has the form

i . .
(4.13) q(z, i)~a(l —3 ?».lwkz) exp (twt— i,8) +
b (1 —+ ;22 wkz) exp (—iwt — A,2) .

The above result indicates the existence of composite Ekman-Stokes-
Hartmann boundary layers of thicknesses of the order {2v/(22 4 w)}%(1/w)
in dimensional units. These layers lie between the Stokes-Ekman layers of
thicknesses (2¢/(22 4 w))” (as o —0) and the Hartmann layer of thickness
(1:/%)’/2 (a8 o —+ co). These results ensure that the inherent resonant type effect
involved in the classical Stokes-Ekman problem is no longer present in this
analysis.

It may be noted that since the present analysis is based upon the first
order approximation to the elastic parameter k, the thicknesses of the boundary
layers remain unaffected by k. However, with higher order approximation
to k, the above solution can be refined so that the struetures of the solution as
well as the associated boundary layers are appreciably modified by the elastic
parameter. Some attention is given to this point in a subsequent section.
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Finally, the above analysis includes the results of the corresponding New-
tonian rotating flow as special cases.

5. - Surface traction at the plate.

The surface traction at the plate is given by

(51) (T.’m "Js" 'ifvz)z=o = l: - (1— k _) Q:l =

exp ({wt) [") Vi(C,—1i8;)

l\DI@

2exp (— }.i i) N
/7 ’

b . xp (—i21
~+ 5 exp[—iwl] [9/ Vi (Cy—1i8y) EEP_E_’&)] 4

Ve

k . Ziwexp (—Aft)  exp (— A%t)
- @ 6Xp [1wi — — ——
JF 2 38 [ L ] [ \/ﬂt '\//77:[/3

—iwl VT(0,— 5’5'1)] +

24w exp (— Ast) , eXp (— Aat)

Va Ty /ER

-+ (wl)—]g b exp [—iwt] [ — w27 (Ca ——-ng)] -+

‘ (e + D) k(b—a)w i .
4~ [4\/%3/2 + 2 T ] exp (— 2it) ,

where C,, 8, (r=1,2) are the well known TFresnel integrals of argument
(A/V75) and 2, = {(2 + )i+ n}th

The surface traction is considerably modified by the elastic parameter .
For small value of 7, (4.1) is unbounded for all k. This implies that the non-
Newtonian fluid offers a greater resistence to the flow than the Newtonian fluid.
On the other hand, the surface traction remains bounded for a large ¢. It can
easily be verified that the corresponding result for Newtonian flow with or
without magnetic field can readily be derived from (5.1) by putting k=0

6. - The ultimate steady state solution.

In order to determine the effect of the elastic parameter on the structure
of the boundary layers, it is important to refine the unsteady velocity field
for sufficiently large times. The exact solution of the fundamental equation (4.3)
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subject to the boundary conditions (4.4)-(4.5) can be obtained by the Laplace
transform technique in the form

ctico
(6.1) gz, 1) = ;;—Z—; f f(s) exp (st —z{(s -+ 2i + n)(1 + sk)}%)ds,
where
_ a b
(6.2) f(s):sniw+s+'iw

The behaviour of the solution q(z,t) for large time ¢ can be determined
from the transform solution §(z, s) for small s. Invoking this approximation
in the integrand of (6.1), the integral (6.1) can be evaluated by using the table
of Campbell and Foster [6]. The final closed form solution for gz, ¢) is then
found as

6.3) &t = g exp [twt) [exp (—2{n—2kw + (2 + o + nkw)}*)

2 [1+kn+2i) % n—2kw -+ (2 + o+ knw) | %
erfe{- J—— L _ t
2 i 14 Ekn -+ 24k

+ exp (2{n— 2k + 3(2 + o + kno)}%)

erfe (f {W}/ n {n—zkw L2+ o+ 7mw)}%)] N

2 4 1+ kn + 2tk

+ —Z— exp (— twt) [exp (—2{n + 2kw + #(2 — o — knw)}*)

) t 14 kn+ 2ik

&

z [14+kn+2i) | % n 4+ 2w + (2 —ow—know) | %
erfe — t

+ exp (2{n + 2kow + i(2 — 0 — kﬂa))}‘/z)

erfe (f {LM}V+ {%4— 2> + (2 — w — Fne) t}/] .

2 i 14+ kn + 2ik
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Invoking the asymptotic nature of the complementary error function for
large time, solution (6.3) is asymptotically equal to

(6.4) q(2, 1) ~ a exp (iowt) exp (—2z{n — 2kw + i(2 + w + knw)}*) +
+ b exp (—iwt) exp (—2fn + 2ho + i@ — o — knw)}*) .

This can be put into a convenient and equivalent form

(6.5) (2, 1)~ a exp (wt — (ot + 31) #) + b exp (— it — (o - :)2)

where
(6.6)a o = {(yi+ 1%+ y}" 2+ o + kno)%,
(6.6), b= 0 1% —p}4 24 o+ )i = -,
(6.7), oty = {(yi 4+ 1)% 4+ po} % (2 — 0 — knw)¥% ,
(6.7), fo={(yi+ 1) —p:} (2 — w0 —knw)% = &1—2 ,
n— 2k
(6.8)s Y1 (m) ’
n + 2k
(6.8)s %x(;zt%a»

Solution (6.5) reveals that it consists of two different Stokes-Ekman-
Hartmann elastic boundary layers adjacent to the plate which has thicknesses
of the order 1/«, and 1/u,. In the absence of elastic parameter, these boundary
layers become identical with those obtained by Debnath [1]. It is noted
that these boundary layers are independently modified by % and » and remain
bounded for all frequencies. This production is contrary to Thornley’s 1y
findings for a Newtonian non-condueting rotating flow.

For a very weak magnetic field with a small value of the elastic parameter %,
it is reasonable to neglect n2, k2 and nk so that

(0t + 3By) = {n—2kw + i(2 + 0)}% and (o + iBs) = {n + 2k + 1(2 — w)}~.
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‘With this approximation, the thicknesses of the Stokes-Ekman-Hartmann
elastic boundary layers are of the order

2 ¥
e < and e s
20 + w— 2kw + (a/0) Bg 20— w + 2kw + (c/o) B

These results clearly suggest that the structure of the boundary layers is
modified by all the parameters of the non-Newtonian hydromagnetic problem.
This confirms that the Coriolis, hydromagnetic and elastic parameters have
pronounced effects on the formation of the composite boundary layers. This
is one of the stricking conclusions of the present analysis and has some physical
interest. These findings are in accord with those obtained by Basu and
Debnath [3] and have constrasting features with those of Puri and Kulsh-
restha [8].

7. = Concluding remarks.

It appears from the above mathematical analysis for the special case (i)
that for ease (i) any new information or conclusion can hardly be given about
the unsteady velocity field and the associated boundary layers. It may be
reasonable to omit the ecalculation for case (ii) which includes case (i) when
m =0 and the case considered by Puri and Kulshrestha [7] when =10
and o = 0. However, a mathematical analysis similar to that of case (i) may
be reproduced for case (ii) without any difficulty.

It would be important and interesting to consider a more general non-
torsionally or torsionally generated flow in a practical geometric configuration
where an electrically conducting non-Newtonian fluid is bounded by two parallel
disks or a closed container. These models appear to have physical significances
for an understanding of geophysical problems and in particular the earth’s
liguid core motion. These problems may be reserved for future studies.
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Abstract.

Based wpon the rheological equations of state for a class of elasticoviscous fluid, an
initial value investigation is made of the hydromagnetic boundary layer flow generated in
an incompressible, homogeneous, electrically conducting rotating fluid in the presence of
@ uniform magnetic field by the nontorsional elliptic harmonic oscillations of an infinite
plate. Some gqualitative and quantitative information is obiained aboul (i) the unsteady
wvelocity field and its important properties, (ii) the cwistence of the associated Stokes-
Elman- Hartmann - elastic boundary layers on the plate and (iii) the significant inter-
action of the Coriolis, hydromagnetic and elastic parameters. Il is shown that there
exists a combined Stokes- Ekman- Hartmann - elastic boundary layers of thicknesses
of the order (v/2Q 4 w F 2kw 4 (0/0) By)}, which remain bounded for both resonant and
non-resonant cases. Attention is given to the behaviowr of the transient solution for suffi-
ciently large t. The surface traction at the plate is caleulated and its general features are
discussed. Several particular resulls are recovered as special cases of this analysis.






