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Some resulis

on uniformly convex linear topological spaces. (**)

1. - Introduction.

Clarkson ([1], § 26,6, p. 353) gave the definition of uniform convexity in
normed linear spaces as follows:

Definition 1.1. A normed linear space X is said to be uniformly convex
if for any ¢ (0 < £<2) there exists a § (0 < 6 < 1) such that for any @,y in X

lel<1, Jyl<i and fo—y>e imply |i(@+y)|<1—4.

It is obvious that this definition of uniform convexity depends on the norm
of the space.

If X is an inner product space and if |- | be the norm induced by the inner
product, then for any two points x, ¥ in X

le+yl*+ la—yl>=2|z|*+ 2]y|*.

This gives that the space (X, |-]) is uniformly convex. It is known that the
spaces I» and L» are uniformly convex for all p with 1 < p < oo ([1], ch.V,
§26, 7 (12), p. 358). It has been shown by Milman that a uniformly convex
B-space is reflexive ([1], ch. V, § 26, 6 (4), p. 354; [2], ch. V, Th. 2, p. 127).

(*) Indirizzo degli Autfori: Department of Mathematics, Jadavpur University,
Calcutta 32. Department of Mathematics, Bangabasi Evening College, Caleutta 9, India.
(**) Ricevuto: 25-11-1974.
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In the present paper we have extended the definition of unitorm con-
vexity to linear topological spaces. We have shown that a uniformly convex
linear topologieal space is locally econvex (2, Th. 2.1) and we have established
that o uniformly convex linear topological space possessing the property (P)
and satisfying first axiom of countability is reflexive (2, Th. 2.3).

2. = Resulis on uniformly convex linear topological spaces.
¥y g

Definition 2.1. A balanced neighbourhood ¥V of 0 in & linear topological
space X is said to possess the property (I) if for any z(s4 0) in X there is a
positive number ¢ such that z¢eV.

Definition 2.2. A balanced neighbourhood ¥ of 0 in a linear topological
space X is said to possess the property (II) if for every &> 0 there is a o
(0<d<1) such that #,yeV and z—yd¢sV imply (1/2)@ -+ )e(l— 0) v,
where 7 denotes the closure of V.

Definition 2.3. A linear topological space X is said to be uniformly
convex if the family ¥~ of all balanced neighbourhoods ¥ of 0 in X possessing
the properties (I) and (II) is a local base at 0.

Let X be a normed linear space. Suppose that X is uniformly convex ac-
cording to the definition 1.1. TLet V={r;zeX and [2]<1} and let
V=1LV for any k> 0. It is easy to see that each V, possesses the properties
(I) and (II). OClearly the family {Vy; k> 0} is a local base at 0. Hence X is
uniformly convex according to the definition 2.3.

Lemma 2.1. Let 4 be a non-void closed subset of a linear topological space.
If for any two poinis »,y in A, (1/2)(x ~y)e A, then A is convex.

Proof. Let @y, y, be any two distinct points of 4. For any ¢ (0<i<1)
write #(f) = (L— ?)a, -+ ty,. Denote by E the set consisting of points
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Then clearly o(t)e A for all ¢ in B. Take any « with 0 < o< 1. Since E is
dense in [0, 1] we can choose a sequence {t,} from ¥ such that ¢, — o« as n — co.
We have x(t,) — o(a) = (ta— o)(yo— 4,). This gives that a(t,) —>u(x) as
n—oo. Since 4 is closed and x(f,) € 4 for all n, it follows that w(«) € A.
Hence 4 is convex.
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Lemma 2.2. Let X be a linear topological space. 1f there is o balanced
neighbourhood V of 0 in X possessing the property (1), then X is a Hausdorff
space.

Proof. Let 2 and y be any two distinet points of X. Let ¥ be a balan-
ced neighbourhood of 0 in X possessing the property (I). Since z— y 50
there is a positive number ¢ such that

(1) zc—yd¢eV.

Choose a balanced neighbourhood U of 0 in X such that U4 UceV. Then
z - U and y + U are neighbourhoods of # and y respectively. If ze(x + U) N
N+ U), then =2+ =y 49y, where 2/,9°e€U. So, 2—y=y —a'€c
€ U+ UceV which contradicts (1). Thus (#++ U)N(y + U) =¢. Hence X
is a Hausdorff space.

Note 2.1. Every uniformly convex linear topological space is a Hau-
sdorff space.

Lemma 2.3. Let X be a linear topological space and let V' be a balanced
neighbourhood of 0 in X possessing the properties (I) and (XI). Then V is convex.

Proof. Take any two points #,y in V. If o =y, then (1/2)@ -+ ¥)=
=ge V. Suppose that o— y##0. Since V possesses the property (I), there
is an &> 0 such that v— y¢eV. By the property (II), thereisa ¢ (0 < 6 < 1)

such that (1/2)(z+y)e(l— 8V c V. Thus for any two points x,4 in ¥,
1/2)@+y)eV. So by Lemma 2.1, the set V is convex.

Theorem 2.1. A uniformly convex linear topological space is locally convew.

Proof. Let X be a uniformly convex linear topological space. Denote
by ¥ the family of all balanced neighbourhoods V of 0 in X possessing the
properties (I) and (II). Then ¥ is a local base at 0. By Lemma 2.3, V is convex
for each V in ¥". Since the family {V; ¥ € #"} is also a local base at 0, it fol-
lows that the space X is locally convex.

We recall now the definition of an inner-product on a linear space.

Definition 2.4. Let X be a linear space over the field € of complex
numbers. A mapping f: X XX — ¢ is an inner-product on X if for =, y,# in
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X and o, fin ¥

(i) f(?/; a;):f(:v, Y
()  flax + By, ) = of(w, ) + By, #),
(ifiy  f(w, 2) > 0 for 40 and f(0, 0) = 0.

The function p, defined by p,(®) = vf(z, #) is a norm on X.

Let & be a family of inner-products on X. The family & = {p,; fe #}
of norms on X generates a topology = on X relative to which X is a linear
topological space. We say that the topology v is generated by the family &
of inner-products on X. For any f in & write: V,= {#; re X and p,(z) <1}
and ¥ gy = {V;; fe F}.

Since for any «, ¥ in X and any f in &

[/ + Y)]* + [pAr— )]* = 2[p,(€) ] + 2[p,(y)]?

and p,(@)> 0 for 0 it follows that each V, possesses the properties (I)
and (IT). If for any f, f, in &, there is an f in F such that f.(z, o) <f(z, 2)
for all # in X (i=1, 2) then ¥, is clearly a local base at 0 in X. So we
obtain:

Theorem 2.2. Let (X,7) be a linear topological space whose topology =
is generated by a family F of inner-products on X. If for any two members f,, [,
in F there is an f in F such that f,(x, x) <flz, x) for all © in X (i =1, 2), then
the space (X, 1) is uniformly convex.

Example 2.1. Let X denote the set of all complex-valued functions
#(?) continuous on [0,1]. Then X is a linear space over the field of complex
numbers under the usual definitions of addition and multiplication by scalars.
Denote by 7 the set of all continuous strictly inereasing funections w(z) on [0, 1].
For z,y in X and w in ¥  define

1

foleey ¥) = [2@)y () do .

0

Then f, is an inner-product on X and so the family & = {fo; 0w €¥"} gene-
rates a topology v on X so that (X, r) is a linear topological space. We can
verify that & satisfies the condition of the Theorem 2.2. Hence the space
(X, ) is uniformly convex.
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Example 2.2, Let X denote the set of all sequences z = (x,, @, 24, ...)

@

of complex numbers with > |@,]2<C 4 co.

=1

Then X is a linear space. Denote by € the set of all bounded sequences
@ = (@1, Uy, @, ...) Of positive terms. For @,y in X and ¢ in € define f,(z, y) =

© —
= Auly Y-

n=1

Clearly f, is an inner-product on X. The family & = {f,; a € ¥} generates
a topology 7 on X such that (X, 7) is a linear topological space. Clearly &
satisfies the condition of Theorem 2.2. So (X, 7) is a uniformly convex space.

Definition 2.5. A uniformly convex linear topological space (X, 1) is
said to possess the property (P) if there is a local base 7~ at 0 of balanced neigh-
bourhoods ¥V possessing the properties (I) and (II) such that the space (X, p,)
is a B-space for each V € 7", where p, is the Minkowski functional of V.

Suppose that (X, 7) is a uniformly convex linear topological space satis-
fying the first axiom of countability. Then there is a local base % = {U,};,
at 0 with U;> U,D> U;d> UyD.... Denote by ¥ the family of all balanced
neighbourhoods of 0 possessing the properties (I) and (II). Then ¥ is a local
base at 0. Chose a member V;in ¥ with V;c U,. Choose a member U, (n,>2)
in % with U, cV,. Now take a member V, in ¥" with V,c U, . Proceeding
in this way we can choose a sequence {V,};>, of members in ¥ and a sequence
{m}, of positive integers with 1=mn,<m,<ny<... such that V,c U,
(»=1,2,38,..). Then ¥,={V,}? is a base at 0 and V,2 V,d Vy>...:

V=1

Theorem 2.3. A uniformly conver linear topological space possessing the
property (P) and satisfying the first axiom of countability is reflexive.

Proof. Let (X,7) be a uniformly convex linear topological space which
possesses the property (P) and satisfies the first axiom of countability. Then
there is a local base ¥, = {V.}.., at 0 of balanced neighbourhoods posses-
sing the properties (I) and (II) with V,> V,2 V,;>.... Denote by p, the Min-
kowski funetional of V,.

‘We prove the theorem by the following steps.

Step I. Denote by X' the dual space of (X, 1) and by X,'1 the dual space
of (X, p,). We show that X'= U2, X,. Let feX’. Then j-(4)ez, where
A =(—1,1). Since 0e€jf1(4), there is a member V,e ¥, such that V,c
cf-*(4). Choose ¢> 0 arbitrarily. Write U =¢V,. Sinece Ucf(ed) we have
f(U)ced. This gives [f(®)]<<e for all 2 U. So f is continuous at 0 in the
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topology of (X, p,). Hence feX.. It is casy to see that X, c X' for n=
=1,2,38,... Thercfore X'=U>, X,.

Step II. Since (X, 7) possesses the property (P), the space (X, p,)
is a B-space for each n. Due to the properties (I) and (II), we see that (X, p,)
is uniformly convex. Hence by Milman’s Theorem ([2], ¢h.V, §22, Th. 2. p.127)
the space (X, p,) is reflexive. The set ¥, is closed, convex, balanced and bo-
unded in the space (X, p,). Hence by Theorem 2 ([2], p. 140) the set V., is
compact relative to the weak topology To, of X induced by A;

Step III. Let B be a closed, convex, balanced and bounded set in
(X, 7). Let s, X~ B. By Mazur Theorem ([2], ch. IV, §6, Th. 3, p. 108)
there is a continuous linear fuuctional f on (X, z) such that f(z,) > 1 and
[fm)| <1 for all e B.

Write ¢ =f(x,) and U= {w; #eX and [f(z)|<1}. Then U is a weak
neighbounrhood of 0. Take an « with 0 <a<<(p—1). Clearly «,+ aU is 2
weak neighbourhood of z,. If ze€a,+ U, then 2= x,+} oz, where ze U. We
have f(z) = f(@o) + af(®) = 0 -+ of(®) > p— oe> 1. This shows that z ¢ U. Since
Bc U we see x,-+ U does not contain any point of B. So a, is not a ze-
aceumulation point of B, where 1, is the weak topology on X induced by X'.
Hence B is closed in the weak topology of e of X.

Step IV. Let B be any closed, convex, balanced and bounded set in
(X, 7). Then by step III, B is closed in the weak topology ve. Let {m,} be
any sequence in B.

For each ¥, there is a positive number o, such that Bco, V,.

Since Bcay V, and o, 7, is compact relative to the weak topelogy e
there is a subsequence {w(’} of {#,} such that {#"} converges to a point
# e, V; in the topology 7e.

Again, since {2P}co, V, and a,V, is compact in (X, To,) there is a sub-
sequence {#?} of {&®} such that {#®} converges to a point 4 €, V, in the
topology 7w, -

Proceeding in this way we obtain sequences {#{™} (m=1,2,3,...) such
that {«i™} is subsequence of {z™ ™} and {a™} converges to a point ™ e
€a, V, in the topology 7a,.

Write z,=a® (n=1,2,3,..). For each positive integer m, {2,}>,, is a
subsequence of {#{™} which gives that {#,}>, converges to (™ in the topology
To . Let feX'. Then bystepIfe X,, for some positive integer m; so {f(¢.)}
converges for all fin X'.

Let feX;. Take any positive integer m. Since X;CX,',,, feX.,. So
f(za) = f(@) and f(z,) —F(@{™) as n—oco. This gives that f(a®) = f(al™) for
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all feX;. So o =a™ for m=2,3,.... Hence z,—a® in the weak to-
1 0 0 H ? 0
bology Te. Since {z,} ¢ B and B is ze-closed, 2V € B. Therefore B is sequen-
gy 5 y Y q
tially ve-compact.

Step V. The topology v of X can be generated by the quasi-norm
[-] on X defined by

; j‘>3, _1_ ) ‘{2,;{:17) '
= 20 1 pulw)

Since py(w) < po(w) < ps(@)<... for all € X and (X, p,) is a B-space for r=1,2,3, ...
we can verify that (X, 1) is an F-space.

Now let M be any bounded set in (X, 7). Denote by B the convex hull
of the set IM, where I= {2; |1]<1}. Then B is a closed, convex, balanced
and bounded set in (X, 7). By step IV, B is sequentially 7z.-compact. By
step II By=B, where B, is the vo-closure of B. Since MuC By, Mo is
sequentially 7o-compact. Hence M, is countably 7ze-compact. Now by
Theorem (7) ([1], § 24, 2(7), p. 315) the space (X, 7) is reflexive.

Theorem 2.4. Let (X, 1) be a linear topological space whose topology
is generated by a sequence {p, Yo, of norms on X satisfying the following conditions

(1) pu@)<polw) <ps()<... for all zeX,
(il) (X, p.) is a reflewive B-space for each .

Then (X, T) is reflexive.

Proof. Let V,={r;2eX and p.(2)<1l} (n=1,2,3,...). Then V,>
DVy2Vyo.... Clearly {V,}7 is a local base at 0. Asin step I of Theorem 2.3
we can show that X' = U;',":,]LX,'1 , Where X’ and X; are dual spaces of (X, 7)
and (X, p,) respectively. The set V, is closed, convex, balanced and bounded
in the space (X, p,). Since (X, p,) is reflexive by Theorem 2 ([2], p. 140) the
set V, is compact relative to the weak topology 7o of X induced by X,'l. Now
we can complete the proof proceeding as in Theorem 2.3.

Example 2.3. Let X denote the set of all sequences @ = (2, &, &, ...)

of complex numbers such that > |z;|*< 4 oo for every a> 1.
i=1

Then X is a linear space over the field of complex numbers. For any a > 1

and ze X define pu(#) = (3 |o:|*)Y* then p, is a norm on X. The family
i==]

P = {pa; a>1} of norms generates a topology = on X making (X, 7) a linear
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topological space. If 1 <a<Cb, then p,(x)<p.(z) for all x € X; so it follows
that the family ¥" = {V,; a>1}, where V,= {#; € X and p.(») <1}, is a lo-
cal base at 0. Since p.(x)>0 for v5=0 it follows that each 7V, possesses
the property (I). Again, for each a>1, (X, p,) is a B-space and from § 26,
7(12) ([1], Ch. V, p. 358) we see that V, possesses the property (II). Hence
the space (X, r) is uniformly convex and possesses the property (P). It is
easy to see that (X, v) satisfies the first axiom of countability. Therefore (X, 7)
is reflexive by Theorem 2.3.

Example 2.4. Let X denote the set of all complex valued functions
«(f) measurable on [0, 1] such that

1
flao(t) e dt << + oo for all a>1.
1]

Then X is a linear space. For e X and a>1, define

po(@) = {[ |a(t) |=dt}¥" .

Then p, is a norm on X under the convention that z =y iff z(t) = y(t) a.e.
on [0,1]. The family & = {p,; a>1} of norms generates a topology v on X
relative to which X is a linear topological space. For 1 <a<<b we have
(@) <Pp() for all weX. So the family ¥ = {V,;a>1}, where V,=
= {z; 2 X and p.(z) <1}, is a local base at 0. Clearly (X, p,) is a B-space
for each a>1. From § 26, 7(12) ([1], Ch. V, p. 358) it follows that ¥, pos-
sesses the property (II) and that V, possesses the property (I) follows from
po(w) > 0 for ws£0. Further it is easy to verify that (X, v) satisfies first axiom
of countability. Hence the space (X, 7) is reflexive.
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Summary.

In the present paper the concept of uniform convewity is extended to linear topological
spaces. It has been shown that a uniformly convew linear topological space is locally conves.
Further it has been established that a uniformly convex linear topological space possessing
the property (P) und satisfyng the ist axiom of countability is reflexive. Some examples
of uniformly convex linear topological spaces are given.
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