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Luigt PAGANONTI (%)

Uniqueness structure and parametrization

for a class of a functional equation’s solutions. (**)

1. — An interesting question in functional equations is to uniquely define
a solution of a funetional equation when its values are known in a set of
points U.

It is clear the smaller is the set U, the more interesting the problem is.
This question was deeply studied for the continuous solutions of the funectio-
nal equation

11G(z, )] = H[f(»), 1(%); », 9]

(see for instance [1]-[9];, [10],, [10],).
In this paper we shall generalize some of the results known till now.

In [9]; and [9];, after having defined a « global [local] uniqueness struc-
ture » for a functions’ class, we got some sufficient conditions to ensure such
a structure.

‘We shall use the same notations as in these papers, and we shall recall
only those results with which we shall work.

2. — Let Z be a Hausdorff space without isolated points and N a set. De-
note by S a class of functions f: & — N, and, for every f,, f;esf, let
8 = {we B: ;@) = f.(0)}.

(*) Indirizzo: Istituto Matematico «TFederico Enrigues», via C. Saldini 50,

20133 Milano, Italia.
(**) Lavoro eseguito nell’ambito del G.N.A.F.A. (C.N.R.). —~ Ricevuto: 9-XT1I-1976.
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Definition ([9]);. % has a global [local] uniqueness structure if there
exists a nowhere dense set U c X, such that, for every f,,f,es?, S>U
implies § = F [8°s=@]. Every set U with such a property is a global [local]
uniqueness set for S%.

Theorem A (}). Let N be a Hausdorff space, Il a connected and locally
connected space and 3 C €(E, N). Suppose that, for every f., f, € # with S #0
and B — 8= 0, there exist a topological space Ty, a connected subsel T c T, and
a funcltion F: T\ x B — H, continuous wn each variable, such that:

1) for every xe B, IF«(T))=FE;

2) for every ze BE— 8, I*T)cE— 8 and JF*(T)=E—8;

ZEE~S

3) for every xS, F{T,— T)cE-— 8.

Then, if V is a closed nowhere dense set such that B— V isn't connected and
weB—V, U=V U {w} is a global uniqueness set for .

Theorem B (3). .Let N be a Hausdorff space, B a metric space in which
balls are cownected, and 3# c €(B, N). Suppose that, for every f,, f, € with
Il — 8 =0, there exist a connected space T, a constant I (0 <k << 1) and a func-
“ton F: T X E-— E, continuous in each variable, such that:

a) P, y)el—8 iff G, y)elT x(B—N);

b) for every we S and y < B, there exists t T suchthat OF(y) or O, (y) converges
to @ so that OF(y) N D(y, kd(w, y)) # 0 or respectively O;(y) N D(y, kd(z, y)) 5= 0.

Then # has a global unigueness siructure. Furthermore, if V is @ closed
nowhere dense set such that E— V isn’t connected and xz,€ B — V, then
U=TU {z,} is a global uniqueness set for H.

(*) this Theorem is an obvious consequence of Corollary 1 in [9]; and of Theorem 1
in [9],, when we consider the case 2 = T, x H.

(?) this Theorem is an obvious consequence of Theorem 1 in [9], and Theorem 5
in [9];.
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3. — Let us consider the functional equations’ class

(%) G (@, y)] = Hlf(2), {(¥); %, y],

where G: BxXE B, {: B—+N, H: NXNXEXE~->N.

Throughout this paper we suppose also N a Hausdorff space and in par-
ticolar 2# = {f: B — N, f continuous solution of (x)}.
Now we can prove the following

Theorem 1. ZLet us suppose that
a) Il is connected and locally connected;
b) for every we H, G, and G* are continuous and surjective;
¢) H is injective in the first and second variable;
d) for every fy, fo€3t, 8 is connected.

Then, if V is a closed nowhere dense set the complement of which is not connected
and xye B—V, VU {x,} is a global uniqueness set for .

Proof. We prove that the hypotheses of Theorem A are satisfied with
Ty=1F8, =S8 and F =G The hypothesis 1) is satisfied because G* is
surjective. Let now # € 8 and ¢ € E — §: the hypothesis 3) is satisfied because -
H is injective in the first variable. Analogously, if ze #— 8 and te S,
by the injectivity of H in the second variable, we have F(t, ) € B — §8; but
t,ze S imply (1, ) S and so, by the surjectivity of @, we have F,(F— 8) =
= — 8§ for every te #— 8. Therefore the hypothesis 2) is satisfied.

Remark 1. If (VX V)¢V, then V itself is a global uniqueness set.
8 5 V implies indeed 8 2 F(V x V) and therefore there exists 4, e (VX V) — V;
now, if f, and f, are equal on V, they are equal on VU {z,} and therefore are
identical.

Remark 2. An analogous theorem is also true for the more general class
of functional equation

& (@, y)] = K[, y, 1, w, {(@), {(y), {(2), f(w), /{1, u))]

if there exist two points #,, o€ § such that L(t, 4,) € S.
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This remark is also true for the following Theorem 2.

As we have seen, to apply Theorem 1 we have to ensure § is a connected
set. The following lemma gives a sufficient condition wunder which § is
connected.

Lemma 1 (3). Consider the functional equation (%) where E is « complete
metric space and H s an injective function in the second variable. If there exists k,
0 <k <1, such that, for every m,yc B, x+#y, ‘

O0.(y) N D(x, kr) N D{y, kr) =0 (*),  where r = d(z, y)
then S is connected (moreover arcwise connected).

Proof. By the injectivity of H, for every z, y € 8, 0,(y)c S. The hypo-
thesis on O.(y) implies therefore that, for every =, y € 8, there exists ze 8
such that d(z, #), d{z, y)<<kd(x,y). Let p: Sx S8 a function which asso-
ciate such a z to every pair (z, ). We shall show in a classic way how to con-
struct a continuous function y: [0,1]— 8§ such that y(0) ==, »(1) =y. Let,

for every #>0, D,= {m/2",0<m<2"} and D =|JD,. We define y, on D,
0

in this iterative way.
Let po(0) =« and p,(1) =y. Now, after having defined y, on D,, we de-
fine y,,4 on D, in this way

VYoyip, = Vn 77:-1«1((2}" + 1)/27l+1) == (p('yn(h/.?”), Vn((h -+ 1)/2n) .

Then, for every teD, we‘put () = lim y,(f).

N n
Now we prove that y is uniformly continuous in D. If z, and 2, L1 are two
- consecutive elements of D,, we have indeed

;. wk-}-l) = 1/2" ’ d(?’(wk)y 7(”1:4-1)) < krd(z, y);

moreover, if {, w €D N [@y, #,,] then d(y(F), y(w)) < (2/@— k) krd(z, y) (°). Let
now 6>0 and n an integer such that &< 1/2%+1; if t, ue D and d(t, u) < 9§,
they have to be in an interval [wy, ;,,] where »,, #,,; € D; and are conse-

(®) A similar result, in a particular case, can be found in [6].

(*) Here O,(y) = {z€ B: G3(2) = G(y) for a pair of integers m,n >0} and G5 is
the k-iterate of @,.

(5) See an analogous argument in {9],, Theorem 6.



[5] UNIQUENESS STRUCTURE AND PARAMETRIZATION ... 341

cutive. Therefore

i

=7 Erd(z, ) .

a(y(t), y(w) <

Since the second term can be choosen arbitrary small if we take n sufficiently
large, y is uniformly continuous on D. A classical theorem lets us conclude
that y: D - E can be uniquely extended to a continuous function y: [0, 110
(moreover to an uniformly continuous function). The proof is now complete.

Remark 3. If Fis a compact metric space and, for every , y € B, vy,
0.() N D@, ) N Dy, )%= 0, r=dz,y),

then § is connected.
On the contrary, we should have §=8,0U S, with §;, 8,7 @, compact
and 8;N 8, = 0. But, if § = dist (S, S,), there exists x* €S, such that

0 <d(@],aF)=20. But, by our hypothesis, there exists ze 0x;) such that
d(z, @), d(z, 27)< § and this is impossible.

Remark 4. The result we got in the Remark 3 is still true if we weaken
the hypothesis on the compactness of E, asking that ¥ is the union of a se-
quence of compact sets I, where B, c H,,, for every n and G(E,xE,) c B,.
In this case 8, =8N F, is connected and § is also connected because it is
the union of a monotonic sequence of connected sets.

From Lemma 1 and Theorem B we have the following
Theorem 2. ILet us suppose:
1) E is a complete metric space in which balls are connected;
2) G s a continuous funciion in each variable;
3) H is injective in the second variable;

4) there ewists &k, 0<k<1, such that , for every =, ye B, ®+*y,
OF (y) N D, kr) N\ D(y, kr) 5= 0 or 0, (y) N D(z, kr) N D(y, kr) £ 8 (r = d(z, ).

Then, if V is a closed nowhere dense set the complement of which is not
connected and e B— V, V U {x,} is a global uniqueness set for .

We have only to assume T = 8§ and F = G/Sx E.
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Remark 5. The hypotheses on #, Of(y) and O (y) can be weakened as
in Remark 3 and 4.

‘We shall now give some conditions under which we can get a partial or
total parametrization of the solutions’ class of ().

Definition. A set WcFE is G-invariant if G(W x W)c W.

It's obvious that if a set W is G-invariant, we can study the functional
equation (%) only on W instead of studying it on E. In particular § is
G-invariant and, if the hypotheses of Liemma 1 are satisfied, S is also a con-
connected set.

Thinking of the previous results we can prove immediately the following

Corollary 1. Let us suppose that there ewists a finite or infinite family
of closed G-invariant sets Z,, n>0, such that Z, is nowhere dense in Z,,., and,
for every n>1, the functional equation (%), with B = Z,, satisfies the hypotheses
of Theorem 1 or 2.

If, for every n>90, Z,cZ,, and Z,.,— Z, is not connected, then, for every
fi, F2€5, from 82Z,0 (U {y.}), where y,€ Z, s — Zay it follows SoU Z,.

n=0 nz=o
Moreover, if B=1J2Z,, then Z, (| {y,,}) 18 a global uniqueness set for .
nz=20 n=0

Proof. We can indeed prove by induction that 8§85 Z, for every n>0.

Example. Let = R? Z, is the spherical surface with center in 0 and
radius 1, Z, is the circle intersection of Z, with a plane through the origin and
Zy= {®y, Yo} Where @y, yo€ Z,. Then, if y,€Z,— Z,, y.€ R*— Z,, Z,,7Z, are
G-invariant and the functional equation (%) satisfies the hypotheses of The-
orem 1 or 2 on Z,,Z, and R3, the set {2} U {5} U {s:.} U {#.} is a global
uniqueness set for 7.

Corollary 2. Let B a Hausdorff topological vector space on R and {u,},
n >0, a topological basis of IE(°). If, for every m >0, the subspace V,=
= V(tg, Usy ..., %) generated by the first n vectors uy, Us, ..., U, 18 G-invariant
and the functional equation (%) satisfies the hypotheses of Theorem 1 or 2 on V,,
then {0} U (U {u.}) is a global uniqueness set for .
n=0

Proof. As {u,}is a topological basis of  and § is a closed set, we have
only to prove that, for every # >0, V,cS.

(®) A set {w,},e, is said a topological basis of E if the vectors u, are linearly
independent and the subspace generated by {u,}.c, is dense in FE.
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We go on by induction. The property is true for n =1 because V,= V()
is homeomorphic to R, {0}c 8N V; is a set the complement of which is not
connected in V; and §N V2 {0}V {u,}.

Let us suppose S0 V,.: As V,, is nowhere dense in V,,;, V,pu— V., is not
connected and %, ,e 8N (V,.,— V,); then we have §>V, ;. The proof is
50 complete.

Corollary 3. Let E be a Hausdorff topological vector space on R and {u,}
a topological basis of L. If every finite dimension subspace V, generated by {u,}
18 G-invariant and functional equation (%) satisfies the hypotheses of Theorem 1
or 2, then {0}V (Uw,) is a global uniqueness set for .

Proof. This proof is analogous to that of Corollary 2. We go on by in-
duction, and we show that § contfains every finite dimension subspace.

Remark 6. Note that in Corollary 3 we consider all finite dimension
subspaces while in Corollary 2 we have only to consider those generated by
vectors {u;}, 1<i<n.

Remark 7. Let & be a homeomorphism of a Hausdorff real topological
vector space B, on a topological space F such that, using the same notations
as in Corollary 2 or 3, &(V,)[&§(V)] are G-invariant and the functional equa-
tion (%) satisfies the hvpotheses of Theorem 1 or 2 on them.

Then £(0) U ( U E(u,)) [£(0) U ( U &(u,))] is a global uniqueness set for 7.

In this case it is mdeed sufficient to consider the functional equation
(G, v)) = H(g(w), g(v); &(u), £(v))
where Gy: Iy, X B, — FE, is defined in such a way:
Gi(u, v) = E1G(E(n), £(v))  and g=7-£.

For this equation the hypotheses of Theorem 1 or 2 are satisfied. Therefore,
it 8= {ueH: g(u)=g(u)}d>{0}U( U {u,}), it follows §,= E, and then
S=E.

Example. An easy case in which we can apply the Corollary 1 or 2 is
the following one (7).
Let B = R* and G: R*XR"->R» defined in this way:

(") See an analogous result by Ng, [8],.
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if = (@, ..., %) and y = (¥, ..., ¥a), G(z,¥) = (24, ..., 2,) is such that, if
Tp=1Y, =0, i<k<n, then 2, =0, i<k<n.
If 4y, ..., 4, are the unit vectors and u,,...,u, are linearly independent
vectors such that V. = V(uy, .., u,) = V(i ..., &), 1<k<n, then V, are
G-invariant.
It’s sufficient now to suppose that G satisfies the hypotheses of Theorem 1

L]
or 2 in every V., 1<k<n to prove that {0}uU (U {u.}) is a global uni-
k=1
queness set.
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Sunto.

In quesia Nota, partendo da aleuni risullati sulle « strufture dumicita » in classi di
funziond, si studia 4l problema di individuare univocamente una soluzione continua della
equazione funzionale f[G{z, y)] = H[f(z), f(y); =, y] @ partire dalla conoscenza dei suoi
valori su un prefissato insieme di punii U. .

I risultati ottenuli generalizzamo quelli attualmente noti.






