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PrEM CHANDRA (%)

On the |Z, ¢| summability of a Fourier series

and its conjugate series. (**)

1. - Definitions and notations.

Let > a, be a given infinite series (*). Then the series > a, is said to be
absolutely summable (E, q) (¢ > 0) or symbolically ¥ a.€|E, ¢| (¢>0), if

Sa+e| 3 (3] re

is convergent. Also see Chandra [1].
We define the summability |Z, 0| equivalent to the absolute convergence.
Let feL(— m, w) and be periodic with period 2, and let

(1.1) @)~ a,+ E: (@, cos nt -+ b, sin nt) = Fa, -+ %An(t) , say.

=1 flea]

The conjugate series of (1.1), at ¢t = =, is

(1.2) S (b, cos nw — a, sin n@) = 3 B.(z) .
ne=1 ne=l
We assume throughout Ay(z) = a, and B,(z) = 0.
We use the following notations in this paper. Let » be a non-negative
integer.

(*) Indirizzo: School of Studies in Mathematics, Vikram University, Ujjain (M.P.)
India.
(**) Ricevuto: 24-IT1-1975.
(*) Summations are over 0,1,2, .., o0 when there is no indication to the con-
trary.
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(1.3) p(t) = Hilw+1) + fw— 1)},
(1.4) p(t) =Hfle+0)—fo—1)},
(1.5) pult) = % f (t— )1 gu) dy (> 0) .

]

Similarly we define ya(t) for o> 0.

(1.6) (Fnt), = [(%)r(ﬁ’(nzl))} L
(1.7) (F@mt))_, = [([f]... r-times) F(ny)(dy)],-, .

2. - Introduction.

Concerning the |B, q| (0 < ¢ < 1) summability of Fourier series and con-
jugate series, the following theorems, due to Mohanty and Mohaptra [3], are
known

Theorem A. Let 0<p<1and 0<g<1. Then g(t)log 1/t € BV (0, p)
implies that > A.(z) € |E, q|.

Theorem B. Let 0<<p<1and 0<g<1. Then w(t) log 1/t € BV(0, p)
and y(t)i-*e L(0, p) imply that > B.(2) € |E, q.

In what follows, we prove the following theorems.

Theorem 1. Let « be a positive integer. Then t~*@a(t) € BV(0, x) implies
that > A,(x)€|B, q] (0<qg<1).

Theorem 2. Let o be a positive integer. Then 1™ ya(t) € BV(0, 7) implies
that 3 B.(z) € |B, q| (0 < qg< 1).

In view of a known result (Bosanquet [2]): @a(t) € BYV(0, ) implies that
2A.@) e |0, B] (B>a>0), it may appear that the condition of Theorem 1
is somewhat artificial. Therefore, in section 7 of this paper, we show that the
conditions imposed upon the generating functions of the Fourier series and
its conjugate series, in the above theorems, are not un-natural.

In section 8, we replace the set of conditions, imposed upon the generating
functions of the Fourier series and conjugate series in Theorems 1 and 2, by
another set of conditions, by showing their equivalence.
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3. — We require the following order-estimates for the proof of the theorems

(3.1) (1 - g1 4 ¢* + 2q cos t)in = O {exp (— nqt*/2n*)} (0 <t< m/2),

(3.2) i ( ) g mE exp (imt) ~ nF(1 g2+ 2q cos 121 exp {i(kt + (n — k) 0)},

7
e \ M

where % is a non-negative integer and

in ¢
azmn—l{ o } 0 <t<n).
For the proof of (3.1), see Ray [4], lemma 2.
Proof of (3.2). We write

A= z (:l) g —mm* exp (imt) .

0

Now, since

m) mim—1) ... (m—%-+1) \m—Ek

(n) nn—1) .. (n—k+1) (n—~7o) (km)

we have

A~'n’:qni (N—Ic) exp (imt) .

ey \m—k qm

As

n (n——«k) exp (iml) i (‘n,-k) exp (imt) _"ik («n—k) exp (i(m + k)t)

— \m—Fk " e \m—k qm o m qnrE

_exp i‘ikt) (1 © exp (it))"—k
q* q

= ¢ exp (¢kt)(q -+ cos t 4 ¢ sinf)»~*

— ¢*(1 + ¢* + 2q cos 1)}=» exp {i(kt + (n — k) 0)} ,

where 6 = tan~*{sin ¢/(g +- cos i)}, we get a proof for (3.2).
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4. — We require the following lemmas.
Lemma 1. The summability method | B, q| (¢ > 0) includes |E, 0.

Lemma 2. Let s be a non-negative integer. Then, uniformly in 0 <t<mx,

B gin mi 25t
(4.1) 2 g+ 1) Z: ( ) ’m= (1"7)5
and

n cos mi 27
(2) Sava| $ () ) " =‘9(1°g7)-

Proof. First consider the case s> 0. The series zsin ntf(n -+ 1)+ is
both absolutely and uniformly convergent in 0 <t¢<z. Therefore, by Lemma 1,
we have

2 (q+1) = 0(1),

n 7 sin mi
mgo ( ) (m’ + 1)+t

uniformly in 0 <t<a.

The case s =0 of (4.1) for 0 <<t<d <1, is due to Chandra ([1], lemma 3)
and for 0 <<t<wm, it can be proved similarly.

The proof of (4.2) is similar to that of (4.1).

5. =~ Proof of Theorem 1.

‘We have

3

2
A4,(x) = - frp(u) cos nu du .

0
Integrating, «-times, by parts, we have

An(®) = 2 “il ol gestl () (cos ), 4-
T A T+ 1) Paia s

I L B
+Em f % pa(u) u**(cos nu)y du .

0
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Now, since w*ps(u) € BV(0, ), we can write v *pa(u) = ¢,(u) — g:(u), where
g:{u) (t =1, 2) are positive, monotonic increasing and bounded in 0<u<7.
Therefore, by the second mean value theorem, we have (0<i,<m)

T 24 i
| wopa(uw) u*(cos nu)s du = A, [ u**(cos nu)sdu + 4, | ur=(cos nu)s du -
1] Q [}

iz
+ A, | u(cos nu)xdu (0 <ty <<t
1}

where the constants 4; (i =0, 1, 2) are defined below

Ay = () — g2(7) and A= (—1)g:(0) — gilm)} (i=1,2).

e

2
s+1 7 S NIT),s 2“ .
751 @, 41 (77) (COS Nax), + = F(a + 0 z A, J w2 (cos nu)s du ,

i=0

where ¢, = x and f; (i =1, 2) are some numbers such that 0<%, <.
Integrating, 2«-times, by parts, we have

ti &1
{ ur*(cos nu)s du = Y (— 1)%(c0s nt)a_sy (t3%) -+
Q 8=0

4
+ 2 1)5+%(Co8 1t;) _140)(82%)era |+ (142%)s0 (COS U)o de
0

§=20

a—1
= Y K(cosnt,), ()14 +

8==0
t
ZK £)e s S{nt,) - [ (u),0(cos nu) s du ,
!—0 0
where K’s denote the constants depending upon s and e, and not necessarily
the same at each oceurrence; and S(nf;) is cos nf; or sin uf; aceording as s is
an odd or even integer. Therefore, collecting the results, we obtain

T 2 F(s —{— 1) 7T @ (){eos na), -+
42 2D S S R(cos mt) () e+
7T ]’ O’ + 1) {=0 8=0
2 (""1) a—s —(1+5)
STea T e S +
2 (”" "oz
+ 2 3 A @ teos ) du
4
(5.1) Ay(w) =3 PP, say.

. r=1
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Now, since P® = 0{1/(n -+ 1)+¢}, the series Y P¥ e |E, q| (¢>0), by
Lemma 1. Also the series zPﬁl’ €|l q¢| (0 <g<1) whenever the series
S P®¢|B, q| (0<g<1). Therefore, for the proof of Theorem 1, it will
be sufficient to show, uniformly in 0 <t<m, that

— Ot

< ny - Smi)
(3.2) S+ X ( )q T

m=0 \ M

(5.3) Dle+1)| X (;) g ™(cos mt)S{ = (-2,

me 0

where integers s and « are such that 0<s<a—1.
The proof of (5.2) follows from Lemma 2

Proof of (5.3). By (3.2), we have

>+ 1) ’ > ( ) g m(cos mt), < (g4 1) (n -+ 1)1 + ¢* + 2¢ cos 1)t

—_ ¥ s
=X, say.

Thus, for the proof of (5.3), it is enough to show that > = O(~1-*%) (0<s<
<oa—1), uniformly in 0<<f< /2.
Now, by using (3.1) and writing d for ¢t*/2=2, we have

T=0{3 n+1) exp(—nd)} =20 { > ('n :r S) (exp (— d))”} ;

(n 4 1)* n-+s
I'(s +1) ~ [ ’

T = 0f(1 — exp (— )~} = O(d~) 5

since

sinee e?/(e?— 1) = O(d-1), for d > 0,
X p— @(t~2(s+1)) — @(t—l—s—a) )

uniformly in 0 <t<z/2, where 0 <s<a— 1.

This terminates the proof of Theorem 1.
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6. - Proof of Theorem 2.

‘We have

3

B,(x) = 7—: f p(t) sinnt dt .

0

]

Proceeding as in Theorem 1 of this paper, the series S Bux) e |, q|
(0 < g < 1), if the following inequalities, for integers s and « such that 0<
<s<a— 1 and uniformly in 0<\t<s, hold

t

(6.1) S+ 1) i (;LL) g f (u2*)ys (sin mu)—x du

< oo,

me=

(6.2) S+ 1)

> ( ) n-m(sin mt), ‘—w O(t-15-%),
m=g

(6.3) >lg+ 1) = O(t*-*),

HYE

nY S(m)
o \m 1 (m + 1)+

where S(mt) is sin mt or cos mt according as s is an odd or even integer.
The proof of (6.1) follows from Lemma 1, since

j? (122),, (Sin M) _o du = @{(m + 1)—1—a} ,

uniformly in 0<t<z. And the proof of (6.3) follows from Lemma 2

By using (3.2) and arguing as in the proof of (5.3), a proof for (6.2) may
be worked out.

This completes the proof of Theorem 2.

7. — In this section we prove the following theorems.

Theorem 3. Let >0 and « be a positive integer. Then ~*D¢ut) e
€ BV (0, ) is not « sufficient condition for |B, q|©<e=<Y summability of Fourier
series at a point 1 = a.

Theorem 4. Let 6>0 and o be a positive integer. Then =@ dyu(t) €
€BV(0,7) is not a sufficient condition for |H,q| (0 < gq<1) summability of
the conjugate series of a Fourier series, at a point ¢t = .
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7.1. We shall requive the following lemma for the proof of above theo-
rems.

Lemma 3. Let s and o be integers such that 0 <s<o~ 1 and let 6> 0.
Then
ny (cos mi),
o \m 1 (sin mt),

— 00,

{iHsta—o Z ({l + 1 )-1x ’

%

as t— -4 0.

Proof. Let 1> 4§> 0 without loss of generality and let

P=3 (g+1)"

- [
f—-m 08 t .
2 (m) g (cos mi),

Now, by (3.2), we have
P=3(q+ 1) "n + 1)51 + ¢* -+ 2¢ cos 1)~ |S(n, s, {, 6) |,
where 0 = tan—*{sin ¢/(g + cos?)} and S(n,s,t,0) is cos {st+ (n— s) 6} or

sin {st + (n —s) 0} according as s is an even or an odd integer such that
0<s<e—1. Now, further, we have

Q=I(+1)3 ( N ) (¢ + 1) (L + ¢ + 2¢ cos 1)1-9 | S(n, s, 1, 0)
I(s + 1) s 2¢* sin 13 2] Hn-0) .
>(1+q)52( N )[1—-(—-——-1+q” S(n, s, 1, 6)

- I'(s 4+ 1) n+s n 1\e ‘ 9 (m .
//.mg( N )(cosr) [14 (—1) qos{?st—;—d(n 5)6}1;

since 2¢! sin £t = (1 4 ¢) sin 7,
n-+s . n s N , .
Q=03 ( N ) (cost)r + (—1)C Y ( N ) (cos 7)» cos {2st 4 2(n 5) 0}

= 021+ (— 1) C2, ’

where C = (I'(s -+ 1))/(2(1 + g)*(cos 7)?).
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Now, it may be observed that

Q=51
D=0 —cosT) "= o
1= ) (sin Lr)2e+d)

and

N

2, = Real part of {exp (i12s(t—0)) 3 (n f s) (exp (i20) cos T)n}
= Real part of {exp (i2s(t — 0))(1 — exp (i20) cos 7)1}
= R-1cos {(s + 1) g -+ 2s(t — 0)},

where

¢ sin 20 cos T

AT @ == e
P = T "cos20 cosz’

and

R? = (1 — cos 20 cos 7)* == sin® 20 cos® 7

== (1 — cos )%+ 2 cos 7{1 — cos 26) = (2 sin® 1 7)% -} 4 cos 7 sin® 0.
2

We further observe that

2(1 2] s+1
(7.1.1) Lim 240 3 = {_(___j_‘i)}
t—>+4-0 q
and
(7.1.2) lim 41 3, = (1 4 q)s+1 % ~3(s+1) .
1->+0 q* q

Therefore we have, by (7.1.2), t+s+e-0 3, — (fi+s L) %0 ;037> 0, and, by
(7.1.1), trrste—s 3 — ((%1+9) Fyg-l-sta—0-—— oo, and hence it follows that:
frtsta—0€) > oo, as t— - 0, which implies that {+s+@=0P — oo, as ¢ — - 0.

Similarly it may be shown that @27 — oo, as t — - 0, where

n

n Q]
> (m)q (sin mt),

m=0

T=2+1)™

This completes the proof of the lemma.
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7.2. Proof of Theorem 3. Without any loss of generality, we take 1>
> 8> 0 for the proof of the theorem.

From Theorem 1, we have

2 a=l (—1)
-

(s + 1) A pysa()(c0S nv); +-
=0

b2

f w0 pg(ae) 42 =0(cos nu)s dut .

[}

(="
(e + 1)

2
a
Writing w8 %pa(u) = Jy(u) — Jo(u), where J (u) (¢ = 1, 2} are positive, mono-

tonic increasing and bounded in 0<u<, and proceeding as in Theorem 1,
we get

9 a1 (_ls

— —) s+1
An(m) - T g5 I’(S + 1) T (Ps+1(75)(003 ,n’n)s +

2 (—1)x 2
AT D

=0 $=0

K (cos nt,),(t,)s+ire—s L

2
—_ 3 N—s4+0—6 4p—(1+5) ) L
Tt D igo B, gﬂ K(t,) n S(nt,)

t
. .
— % B, 2-0). (608 710)._« daz
T e e+1) go 1] (w22=8),, (cOS Nu)_a dut ,
0

An(.’l)) =D, + Cy + a, -+ €y

where B, = J,(71) — J3(n), By= (— 14T (0) — Jo(m)} (i =1,2); to =1, t; (i =
=1, 2) are some numbers such that 0 <#;<z; K’'s denote the constants depen-
ding upon s and «, not necessarily the same at each occurrence; and S(nt,)
is cos nt; or sin nt; according as s is an odd or even integer. Thus from the
above relation, we have

(7.2.1) Cp == A"({U) - bn_ dn_ Cn .
Now, the series > ¢,€|B, q| (0 <g< 1), if and only if

i "
qn—m Cpn
m=g \

< o0,

Zo=(qg+ 1)
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-3
=13

But, by (7.2.1), we have

20<z (q + ])— éo (;i) q‘ll—ﬂl -Am(m —‘— z (q + 1 2 ( ) fi—n bm ' +
+3a+| 3 (0] o |2, () e
(7.2.2) 5= 54 S Db T

Since the series > |6,|= 0{> 1/(m + 1)1+*9} < co, X* < oo follows from
Lemma 1. And the boundedness of X; follows from Lemma 2 and that of X,
follows from (5.3), case t = z. Therefore for
(7.2.3) 2y < oo,
ie. > A.(»)elH, q| (0<g<1), it is necessary, from (7.2.2), that

(7.2.4) , Ty < oo,

which is true if and only if

Ty == fitsta~s z (q _{_ 1)~ = 0(1),

m=0

5 (2) e

uniformly in 0 <t<z, where integers s and o« are such that O<s<a—1
But, by Lemma 3, X, — co, a8 t— -4 0, therefore 2y is not bounded uni-
formly .in 0 <<{< s, which implies that (7.2.4) does not hold and hence (7.2.3)
does not hold, that is 3 A,.(z) is not summable |Z, ¢| (0 <<g<<1).

This terminates the proof of Theorem 3.

7.3. Proof of Theorem 4. — Its proof runs parallel to that of Theorem 3.

Remark 1. Proceeding as in Theorem 3, it can be shown that the con-
dition (-¢/g(k[t))pa(t) e BV(0, %) is not a sufficient condition for |E, ¢| (0<
< ¢ < 1) summability of a Fourier series, at a point ¢ = », where g(kft) is &
funetion of the type (log k/t)e, (log, kft)e, ..., (log, k[t)e, where k is suitable
positive constant such that g(kjm) > 0,-¢> 0, log, = log and log, = loglog, ;.
A similar remark is also valid for the conjugate series.
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8. — Let F(t) € L(0, a), where a> 0, and let

¢

(8.1) P(t) :F(t)w% f P(w) du .

0

Then we prove the following lemma which shall be used in this section.
Lemma 4. Let ¢>0 and let F(t) e L{0, a) (&> 0). Then

(8.2) - I'(t) e BV(0, a)

is and only if

(8.3) (i) P(-+-0)=0, (il) ¢ P(t) e BV(0, a) .

Proof. We first prove that (8.3) implies (8.2). Let £> 0. Then, on
substituting the value of P(f) from (8.1), we have

t t u
-{—j P dum (t)—il— flf’(u)du—}—f i {If’(u)—i flf’(y)dy}du,

(8.4) P(t)—l—f —dc_P(t)— - fl‘(u) du ,

after some straightforward manipulation. Now, since (-4 0)= 0, by (8.3) (i),
&
we follow that (1/e) [F(u)du —0, as £¢—0. And hence, on taking the limib

]
e—0 in (8.4), we get
= (u)
(8.5) F{ty =Py + | — du,

which is the inverse transformation of (8.1), under (8.3) (i). Now suppose
that {—P(¢) e BV(0, a). Then we can write {—P(f) = Py(t) — P,(t), where P,(i),
P,(t) are non-negative and non-decreasing in 0 <t<a. Thus, from (8.5), we get

e B(t) =t~ P(t) 4t~ ft ue—t {P](u) — Pg(u)} du .
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And, by using the transformation « = fv in the integral of the above equa-
tion, we have

. 1 1
e P() =1 P@) + [ vt Pytv)dv— [ vt Pyftv) do .
[ [}
Now the integrals

1 1
[ vt Py(w) do, [ v Pofto) dw
9 o

are non-negative and non-decreasing functions of ¢ in 0<t<a; hence their
difference is a function of bounded variation over (0, «). And, since {—P(f) e
e BV (0, a), we follow, from the above equation, that {—F(f)e BV(0, a).

The econverse implication, i.e. (8.2) implies (8.3), may be proved in a similar
way from (8.1).

Now, we prove the following theorem

Theorem 5. Let o be a positive integer. Then
(8.6) pa(-+0) =0 and 1=« Py(t) € BV (0, 5)

imply that > A (z)e|E, q| (0<gq<1), where

4

(8.7) Pa(t) = @alt) ——; f palu) du .

]

Remark 2. It may be observed that @.(t) € BV (0, ) implies that Fa(t) €
e BV(0, ), but converse in not necessarily true. For example, let @a(t) =
= log m/t, which is not of bounded variation over (0,z), but Fu(f) =1¢€
€ BV(0, ). Therefore, alone Px(t) € BV(0, x) is lighter condition than ga(t) €
e BV(0, x).

Proof of Theorem 5. On replacing P(f) and I'({), respectively, by
P4(t) and @q(f) in (8.1) and Lemma 4, we obtain, respectively, (8.7) and, on
letting ¢ = & and @ = x in Lemma 4, (8.6) implies that t—*@4(t) € BV(0, 7).
And therefore the proof of the theorem follows from Theorem 1.

A result, corresponding to Theorem 5 for the conjugate series, also holds.

The Author is very much indebted to Dr. G. D. Dixit, Department of
Mathematics, University of Auckland, New Zealand, for his valuable com-
ments and suggestions on this paper.
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