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GIOVAMBATTISTA AMENDOLA (%)

On a particular nuclear reactor

with a spherical geometry. (*¥)

1. - Intreduction.

The neutron flux in a nuclear reactor with no reflector, as it is well known,
is maximum in the center of the core and vanishes at the extrapolated boundary.
Moreover the evaluation of the average flux gives values which depend on the
particular geometry of the reactor and are in any case considerably less than
the maximum value. Apart from the use of technical expedients that however
present disadvantages, it is possible to flatten the flux, i.e., to increase the
ratio y of maximum to average flux with the use of a peripherical reflector,
in the presence of which the flux is zero at the extrapolated boundary of the
reflector and then its average value increases.

If we refer to unreflected thermal reactors, the value of y obtained for
an infinite plane slab.(y = 0,637) is much greater than the values calculated
for the conventional geometrical shapes (only in the case of the sphere we
have y = 0,304). Therefore the idea of a hollow spherical reactor rises, in
order to realize a critical system, which, when the radius R, of the inner cavity
increages, may approximate more and more the physical behaviour of the infinite
plane slab. :

In this work we relate only ’ohe nuclear caleulation that has qulte shown
the exactness of such a physical intuition.

(*) Indirizzo: Istituto di Matematiche Applicate « U. Dini», Facolth di Inge-
gneria, Universita, 56100 Pisa, Italy.

(**) This work is the revision of a part of the Author’s graduation thesis.. The
sub;ect was suggested by prof. Lorenzo Pog i, to whom the Author expresses hlS glahtude
Ricevuto: 8-V-1977.
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We want only to hint at a possible solution for the structure of the reactor:
the reactor is graphite-moderated and gas-cooled; the fuel elements (such as
the control rods) have the shape of a frustum of cone convergent towards the
center of the reactor and carry their own portion of peripherical reflector;
the gas-coolant enters in radial direction crossing the reflector and the core
and it flows into the inner cavity, from which it goes backwards through dif-
ferent pipes and gathers in a peripherical chamber. The reactor is anchored
to a structure that is outside, has a spherical shape and is connected with the
vertices of an icosahedron to keep the spherical symmetry.

This solution allows us to distribute the fuel elements uniformly, therefore
all the elements are in the same condition of working, whence the possibility
of discharging simultaneously the elements, which are consumed enough uni-
formly also in their length by virtue of the high values of y. To change the
fuel elements we might consider, for example, these two solutions: to wheell
the reactor with two couples of jacks to be pitched in holes which are made
in the carrying structure where the vertices of the icosahedron are, or to wheel
the fuelling machine around the core. But now we do not dwell on such
subjeets any longer.

2. - Neutron flux distribution.

The reactor, that we take into consideration, has the shape of a hollow
sphere surrounded by a reflector, therefore, in order to calculate the neutron
flux, we must consider three different regions: the inner central cavity, the
active zone of the reactor (core) having the shape of a spherical bark and,
at last, the peripherical reflector with the same shape. Therefore the charac-
teristic sizes will be the radii R, and R of the two spheres that delimitate the
cavity and the eore of the reactor respectively, besides the thickness 7T of the
reflector; we shall suppose that 7' includes the extrapolated distance as well
as B when 7 = 0.

For the nuclear calculation we suppose that the reactor is homogeneous
and thermal, moreover we assume that both the reflector and the moderator
are made of the same material.

Denoting by @, the neutron flux in the core and by B? the buckling of
the critical reactor, the diffusion equation in the steady-state is

(2.1) ' A2®, - B, — 0.

This differential equation, using a system of polar coordinates with the
origine in the center of the reactor and taking into account the particular
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spherical symmetry, assumes the following form

QD) | 2 AB)
dr2 + r o dy

-+ B* ¢L()) =40,

where 7 is the radial distance from the center.
Putting
i(7)
(2.3) D(r) = —,

¥

the second order differential equation (2.2), whose coefficients are not constant,
becomes simply

d2u(r
(2.4 D+ Bratr) =0,
from which it follows that
(2.5) w(r) == A, sin (Br) + A, cos (Br)

whence, using (2.3), we have
(2.6) D (r) = %[A1 sin (Br) + A, cos (Br)] .

The neutron flux @, in the reflector may be deduced again by the dif-
fusion equation, which now may be written in the form

1
A2 @, — 25 @, =0,

—
[\]
]

~—

where I, is the thermal diffusion length in the reflector. The general solution
of this equation may be deduced in the same way used for (2.1); we obtain

1
(2.8) () = - (Cy exp [fr] + Csexp[—kr)),
where we have put

.2 .
(2.9) k 7
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The two solutions (2.6) and (2.8) must satisfy the boundary conditions,
which impose the continuity of the flux and of the neutron current density
at the spherical surfaces that delimitate the inner zones of the reactor, besides
the fact that the flux be zero at the extrapolated distance of the reflector.
Therefore, besides

(2.10) DR+ T)=0,

we must have

(2.11) D,(R) = P,(R)
and

d®] . [4®,
(2'12) D. [ dr :IT=R - Dr [717]1=R’

where D, and D, are the diffusion coefficients of the core and of the reflector
respectively; at last, it is enough to observe that we have neither production
nor absorption of neutrons in the cavity to may state that

(2.13) D(r) = @(R,) Vr << Ry
and

rdd,
(2.14) [ﬁr_] = 0.

From the condition (2.10) we have at once
(2.15) | O, = — Cyexp [2K(R + 1]
and, if “e put N | -
(2.16) 0 =—20,exp k(R + T)],

the solution (2.8) assumes the following form

(2.17) @r) = sinb [k + 7 — ).
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... The other three conditions (2.11), (2.12) and (2.14), taking into account
the fact that the reflector and the moderator are made of the same material

(therefore the diffusion coefficients are equal, see on page 125 of [3]), give
the following system

A, sin (BR) -+ A, cos (BR) = C sinh (kT))

(2.18) 4 A4,;B cos (BR)— A,Bsin (BR) = — Ck cosh (k1)

A, [BR, cos (BR,) — sin (BR,)] — 4.[BR, sin (BR,) 4 cos (BE,)] = 0
linear and homogeneous, which has nontrivial solutions for 4., 4, and C if
and only if the determinant of the matrix of the coefficients is zero. From
this condition we derive, with some caleulus, the eritical equation of the
reactor
(2.19) [B*R, tanh (kT') — k] sin [B(R — Ry)] =

— Bftanh (kT) - kR,] cos [B(R — Ro)].
QVYVe' observe that in this trascendental equation we have certainly
(2.20) ’ sin [B(R — Ro)] # 0,

beéa;uSe, otherwise, also the right-hand side ought to vanish, but that is not
possible for

(2.21) ' tanh (kT) 4+ kR, > 0.
Then, the equation (2.19) reduces to

1 B2R, tanh (k1) — &k
B tanh (7)) + kR, ’

(2.22) ot [B(R— Ry)] =

from which we may obtain for R the following relation

’ | > | ] -
(2.23) =R+ 5 {eot

, BR, tanh (k1) — L/B I
tanh (k7') + kR, !

where = is zero or an integer such that the neutron flux is positive for any
7 € [R,, R]. i
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On the other hand, writing (2.6) in terms of » — R, and taking account
of (2.18),, we have

sin [B(r — Ry)] 4+ BR, cos [B(r — Ry)]
Br ’

(2.24) Do(r) = D(R,)

from which it follows that @, vanishes for the values 7> R, such that

L 1
(2.25) cot [B(F — Ry)] = — 7R
Le., when
) Fe= R 1 -1 1
(2.26) =Ly + 5 fco ~BER, + ma |,

where m is integer.

We observe that (2.23), when 7= 0, coincides with (2.26), hence, what-
ever the values of B and R, may be, the first value of 7 (m = 0) is equal
to R = R caleulated for 7 =0 and » = 0, assuming that B includes the
extrapolated distance of the bare reactor; moreover, when 7' 540 the critieal
radius R is surely less than R (in fact the argument of cot—* in (2.23) is an
inereasing function of 7), therefore the flux does not vanish within the core,
whatever the values of B and R, may be, provided that we assume only »# = 0
in (2.23); for any » > 0 we have always R greater than the first value of 7.

The critical radius of the reactor, therefore, is given by the following
expression

1 . BE,tanh (kT)—k/B

3 lrd > Py _ t]
(2.27) B = R+ B tanh (k7) + kR,

We note at once that (2.19) when R, = 0 becomes the critical equation
of a full spherical reactor with the reflector (see (5.80) of [3])

(2.28) k sin (BR) + B tanh (kT) cos (BR) = 0 ;

then from (2.27), when R, increases without bound, we have the following limit

. . 1 . IB -
(2.29) Iim (R — R, = B cot 1[% tanh (k1 )] ,

Ro=>+co

that gives the half-thickness of a critieal infinite plane slab.
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This second result dervives just from the fact that when R,— 4 oo the
hollow spherical reactor beeomes an infinite plane slab; moreover the condi-
tion that the derivative of the flux is zero at » = R, is true also in the middle
of the infinite plane slab, whose thickness is twiece the limit expressed by (2.29).

We also observe that, as T tends to infinite, we have

: 1 . BR,—kB
(2.30) :I’El-l]:lcoR = Ry -+ B cot—t TR,

from which we may calculate the greatest savings we can obtain with the
reflector for any value of B and R,, of course to be referred to the case
with 7' == 0. Such savings can be obtained in practice by the values of T
such that tanh (k7)==1 and hence when 7' = 2L, + 3L, (being tanh 2= 0,964).

At last, we note that also the constant ¢ of (2.17) depends upon D (k,),
being for 7% 0 (when 7 = 0 we have € = 0 too), on the ground of (2.11)
and (2.18),,

R

(2.31) ¢ = Sinh (o) D (R),

where @ (R) is given by (2.24).

3. « Neutron flux flattening.

As it is well known, a particularly important index of a good working of
a reactor is the ratio

1 = Q_jc
(3“1) y (Qc)max ’
where

) . 1
(3.2) D, = 7 f &, dV

4

is the average value of the flux in all the volume V of the core and (D,)uy
is the maximum value that the flux assumes in the core.
As regards the maximum we have

(3'3) (¢C)1nax = QC(RO) .
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To prove this we begin by observing that
(3.4) D(r)>0 Vrel[R, R),

hence and from (2.2) it follows that in such an interval we have also

d=9 2 dP
¢ 2 Fe B2
(3.5) dr® + r dr P.<0,
wheace
a:d, < 240,
(3.6) dr? r dr

If we suppose that in a right-neighbourhood of R, (r > R,) we have d®,/dr >0,
from (3.6) we ought to have in such a neighbourhood d:@,/dr2<<0 and
hence the function @,.(r) would be there increasing and concave downward;
but this is not possible for the neutron cwrent is continuous and {2.14) holds.
Thercfore we can state that the neutron flux is not an increasing funetion of »
in [R,, B) and hence (3.3) follows.

The value of @,(R,) must be chosen on the ground of the power of the
reactor. B

To obtain @, we must calculate the integral of (3.2) over the volume

4

(3.7) V=g a(R— R

of the eore, ie., with » which ranges from R, to R. Thus we have

3 , )
(3.8) Y= mam_ {(1 + B2R, ) sin [B(E — I,)]

— B(R— Ry) cos [B(R — R)1} .

4. ~ Numeriecal caleulus.

Because of the particularly complicated form of the deduced relations,
we have preferred to study them in funetion of the various parameters, also
to have a complete idea of the nueclear behaviour of the reactor. Thus, we
have fixed B, R, and 7T and we have calculated the corresponding ecritical
sizes (the radius R and the volume V) and the flux flattening y with the
computer. ,
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To do this, in particular, we have modified the equation (2.27), which,
on the ground of the well known relation

(4.1) wwy:g—mrw,

may be written in the form

1= BR, tanh (ET) — k/B
= — —_—— -1
(4.2) k ‘R°*‘1z[z A R T + WE,

The programme has been made using the FORTRAN IV language, here related.

READ(2,1)AL,P PG
FORMAT(2F12.4,.F12.7)
AK=1./AL ‘

DO 2 1=1.7

T=20%1-20

TH=TANH ( AK3*T)

DO 2 J=1912

RO=253J

RO3=R0O¥3%3

DEN=TH+AK¥RO

DO 2 kK=1,20

B=P%FLCATI(K)

B0O=B%R0O
X={(BG¥*TH~AK/B) /DEN
Y=PG/2.~ATAN(X)

R=RC+Y/B

A=R*%3-R03

V=b  %PG¥A /3.

APP=3 . ( {T.+BORBHR}*SIN(Y)=Y#COS{Y 1))/ (B¥¥3%A
WRITE(3,3)TsROsBsR3VAPP
CONTINUE
FORMAT(1X:2(F560,2%)sFT-4s2X53(E14.44:2X))
STOP

END

In it the values of the thickness 7' of the reflector vary from 0 em to 120 em
with variations of 20 cm. When 7' = 0 em we have the case of the bare reactor,
useful to caleculate the savings corresponding to the various thicknesses of the
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reflector; the greatest savings may be derived from the ease with 7' = 120 em
which is a thickness greater than 2L, (we have assumed for the graphite
AL = L, = 52 em).

The values of R, range from 25 em to 300 ¢m with variations of 25 cm;
thus we have obtained a detailed study of the influence of such a parameter
on the nuclear caleulation of the reactor.

At last, for any value of 7' and R, we have varied B from 0,005 cm—* to
0,1 em~! increasing it with variations of 0,005 cm—. Such values comprehend
widely the set of the values of B’s of the extant reactors and this only to
have a complete study of the peculiarities of the spherical reactor in
examination.

5. « Results.

Also for 7' = 0 cm (the bare reactor) we have considerable improvements
in »’s of the reactor in examination for any value of B and R, in comparison
with the other conventional geometries. Such an advantage is accentuated
as R, increases for any fixed value of B; an analogous result is obtained if
we fix R, and we increase B.

The values of y, obtained when the thickness of the reflector islittle greater
than 2L, (for 7 = 120 cm), are excellent; for example if B = 0,02 em™!
y varies from 0,596, when R,= 25 e¢m, to 0,859, when E,= 300 cm. At last,
we observe that even with a small thickness of the reflector (for example
when T = 40 em) we can obtain considerable improvements in comparison
with the case 7 = 0 e¢m.

The following table lists some values of R and y corresponding to some
values of B, T and R,; in it we express B in em™! and R, EK,, T in cm.

Table I.
B = 0,01 B = 0.02 B = 0.03
T=20 T =120 T=20 T =120 T=0 T =120

R, R ¥ kB y R y B Y R y B y

25(1314.6 | 0.312(267.5 | 0.459 | 158.8|0.333|/119.1 | 0.5961108.2 | 0.360| 75.2|0.702
50(/817.7]0.333270.6 { 0.488/167.8|0.387{128.0]0.6731121.9 1 0.434 || 88.90.796
75 324.8 1 0.3601277.6 | 0.52311182.9 | 0.434{ 143.1| 0.731| 141.3 | 0.483 1 108.2| 0.845
100 335.6 ] 0.387(/288.4 | 0.558 || 201.7 | 0.469 1 161.9 | 0.770|/ 163.0 | 0.515 | 130.0 | 0.871
1251 349.2 {1 0.412]1302.4 | 0.588222.5 | 0.495 1 182.8 | 0.795 || 186.0 | 0.536 || 152.9 | 0.887
150 365.8 | 0.4341318.7 | 0.614 || 244.6 | 0.515 | 204.8 | 0.813 | 209.6 | 0.552 | 176.5 | 0.898
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In any case R decreases if B increases, therefore the thicknesses B — R,
of the core become very small while the corresponding values of ¢ become
very high.
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Sommario.

Si considera wn particolare reattore nucleare avente la forma di une sfera cava con o
senza riflettore periferico, mettendone in risalto il maggiore appiatiimento del flusso neutro-
nico rispetlo alle alire geomelrie convenzionali.
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