R. A. ALÒ, A. DE KORVIN and V. VAN THO (*)

A Hellinger-Hahn decomposition theorem. (**)

Introduction.

Many problems related to countably additive measures have been extended to finitely additive set functions. In [6], for example, the Hewitt-Yosida decomposition was generalized to s-bounded finitely additive set functions by using a variation of the Caratheodory process. In [7] the author obtained generalizations of the Hewitt-Yosida decomposition and the Lebesgue decomposition to finitely additive vector measures satisfying some continuity condition.

The present work generalizes a Hellinger-Hahn decomposition of the domain X of a Borel function (see [5]) in the case where the measure μ on the Borel σ -algebra of X is only finitely additive.

The result in [5] can be stated as follows: Let f be a countable to one Borel function from a complete separable metric space X into another complete separable metric space Y. Both X and Y are equipped with their usual Borel σ -algebras and X is further equipped with a finite measure μ . Then X can be partitioned into pair-wise disjoint Borel sets N, C_1 , C_2 , C_3 , ... (this sequence may be finite) such that

- (1) $\mu(N) = 0$;
- (2) $\mu(C_i) > 0$ for each i;
- (3) $f|_{c_i}$ is injective for each i;
- (4) the measure induced by $f|_{c_{i+1}}$ is absolutely continuous with respect to the one induced by $f|_{c_i}$.

^(*) Indirizzi degli AA.: R. A. Alò, Dept. Math., Lamar Univ., Beaumont, Texas 77710, U.S.A.; A. De Korvin, Dept. Math., Indiana State Univ., Terre Haute, Indiana 47809, U.S.A.; V. Van Tho, Dépt. Math., Univ. Montréal, Montréal Que. H4B 1R6, Canada. - The first Author was partially supported by NATO grant n. 835.

^(**) Ricevuto: 1-VI-1977.

In this paper we obtain a generalized result by using a variation of the Lebesgue decomposition (see [7]).

Preliminaries.

Throughout this paper X and Y are both Banach spaces equipped with their usual Borel σ -algebras $\mathcal{B}(X)$ and $\mathcal{B}(Y)$, respectively. Let μ be a nonnegative finitely additive measure on $\mathcal{B}(X)$ and let f be a Borel function from X into Y. The function f is said to be *countable to one* if the inverse image of every singleton is either finite or countable.

Theorem 1 (Lusin) (see [3]). Let f be a countable to one Borel function from X into Y. Then X can be partitioned into disjoint sets A_1, A_2, A_3, \ldots such that the restriction $f | A_K$ of f to A_K is injective for each K.

The following is a variation of the Lebesgue decomposition obtained in [7].

Theorem 2. Let m be a finite non-negative finitely additive measure on a σ -algebra Σ . If λ is a finitely additive non-negative measure on Σ , m is uniquely representable as the sum $m=m_s+m_a$, where m_s is λ -singular and m_a is λ -continuous.

Note that two positive measures μ and ν are singular (to each other) if $\mu \wedge \nu = 0$. If μ and ν are finitely additive, then given $\varepsilon > 0$ there exists a set $E \in \Sigma$ such that $\mu(E) < \varepsilon$ and $\nu(E') < \varepsilon$. If μ and ν are both countably additive, then $\mu(E)$ and $\nu(E')$ can both be made zero (see [4]). To distinguish these two cases, as far as the decomposition of the original set into E and E' is concerned, in the former case we say that μ and ν are topologically singular (see [6]).

Decomposition of the domain.

Definition 1. Let λ and μ be two finitely additive measures on a σ -algebra Σ . For $\varepsilon > 0$, λ is said to be ε -approximately equal to μ if

$$\sup_{B\in\Sigma}|\lambda(B)-\mu(B)|<\varepsilon.$$

Definition 2. Let λ_1 and λ_2 be two finitely additive measures on a σ -algebra Σ . For $\varepsilon > 0$, λ_1 is said to be ε -approximately absolutely continuous to λ_2 if there exists finitely additive measures μ_1 and μ_2 which are ε -approximately equal to λ_1 and λ_2 , respectively, and such that $\mu_1 \ll \mu_2$.

In the following we will indicate by the notation $A_{ijj...j,r}$ that the sub-

script contains K elements up to the colon «: ». If no colon appears then there are a total of K elements in the subscript.

Theorem 3. Let f be a countable to one Borel function from X into Y. Then for any $\varepsilon > 0$ there exists a sequence $\{D_i\}$ of disjoint Borel sets in X such that each D_i is the limit of a sequence $\{B_i^n\}_{n=1}^{\infty}$ of Borel sets satisfying the following properties:

- (1) $B_i^n \subset B_i^{n+1}$.
- (2) $\mu f |_{B_{i+1}}^{-1}$ is ε -approximately absolutely continuous with respect to $\mu f |_{B_{i}}^{-1}$.
- (3) Each B_i^n is a finite disjoint union of Borel sets of the form

$$B_i^{\mathbf{n}} = A_{i22...2} \cup A_{i+1,22...2:1} \cup ... \cup A_{i+K-1,22...2:1}$$

Moreover the sets A's satisfy the following properties:

- (a) The function f is one-one on each A.
- (b) $A_{n+K,22...2} = A_{n+K,22...2:1} \cup A_{n+K,22...2:2}$.
- (c) $\mu f|_{A_{n+K,22...2:i}}^{-1}$ (i = 1, 2) is ε -approximately equal to $m_{n+K,22...2:i}$ and $m_{n+K,22...2} = m_{n+K,22...2:1} + m_{n+K,22...2:2}$, where $m_{n+K,22...2:1}$ is topologically singular and $m_{n+K,22...2:2}$ is absolutely continuous with respect to $(m_{K,22...2} + m_{K+1,22...2:1} + \dots + m_{n+K-1,22...2:1})$.
- (d) $\mu f|_{B_k^n}^{-\frac{1}{2}}$ is ε -approximately equal to $(m_{K,22...2} + m_{K+1,22...2:1} + ... + m_{n+K-1,22...2:1})$.
- (e) $(m_{K+1,22...2;2} + m_{K+2,22...2;21} + ... + m_{n+K,22...2;21})$ is absolutely continuous with respect to $(m_{K,22...2} + m_{K+1,22...2;1} + ... + m_{n+K-1,22...2;1})$.

Proof. Consider the partition of X into disjoint Borel sets $A_1, A_2, A_3, ...$ by Lusin's theorem.

Let $\mu f |_{A_i}^{-1}$ be defined by $\mu f |_{A_i}^{-1}(B) = \mu(f |_{A_i}^{-1}(B))$ where $B \in \mathcal{B}(Y)$. Now $\mu f |_{A_i}^{-1}$ is a non-negative finitely additive measure defined on $\mathcal{B}(Y)$. Given $\varepsilon > 0$, let ε_i^i be a double sequence of positive numbers such that $\sum_{i,j} \varepsilon_i^i < \varepsilon$. We set $m_i = \mu f |_{A_i}^{-1}$. By Theorem 2, m_2 can be written as $m_2 = m_{21} + m_{22}$ where m_{21} is topologically singular and m_{22} is absolutely continuous with respect to m_1 . Then there exists $B_0 \in \mathcal{B}(Y)$ such that $m_1(B_0) < \varepsilon_1^1/2$, $m_{22}(B_0) < \varepsilon_1^1/2$, $m_{21}(B_0') < \varepsilon_1^1/2$. The Borel sets $A_{21} = f |_{A_2}^{-1}(B_0) = f |_{A_{21}}^{-1}$ and $A_{22} = f |_{A_2}^{-1}(B_0') = f |_{A_{22}}^{-1}(B_0')$ form a partition of A_2 . For $B \in \mathcal{B}(Y)$ we have $f |_{A_{21}}^{-1}(B) = f |_{A_2}^{-1}(B \cap B_0)$ and $f |_{A_{22}}^{-1}(B) = f |_{A_2}^{-1}(B \cap B_0')$. This gives $\mu f |_{A_{21}}^{-1}(B) = m_2(B \cap B_0) = m_{21}(B) - m_{21}(B \cap B_0)$. Therefore,

$$|\mu t|_{A_{11}}^{-1} - m_{21}| < \varepsilon_1^1$$
 and $|\mu t|_{A_{22}}^{-1} - m_{22}| < \varepsilon_1^1$.

Next, we may decompose m_3 with respect to $\mu f|_{A_1 \cup A_{21}}^{-1}$ as $m_3 = m_{31} + m_{32}$ where m_{31} is topologically singular and m_{32} is absolutely continuous with respect to $\mu f|_{A_1 \cup A_{21}}^{-1}$ Then A_3 can be partitioned into $A_{31} \cup A_{32}$ such that

$$|\mu f|_{A_{31}}^{-1} - m_{31}| < \varepsilon_1^2$$
 and $|\mu f|_{A_{32}}^{-1} - m_{32}| < \varepsilon_1^2$.

Using this method we can decompose m_n with respect to $\mu f|_{A_1 \cup A_{21} \cup \ldots \cup A_{n-1},1}^{-1}$ into the sum $m_n = m_{n1} + m_{n2}$, where m_{n1} is topologically singular and m_{n2} is absolutely continuous with respect to $\mu f|_{A_1 \cup A_{21} \cup \ldots \cup A_{n-1},1}^{-1}$. Then A_n can be partitioned into $A_{n1} \cup A_{n2}$ such that

$$|\mu f|_{A_{n_1}}^{-1} - m_{n_1}| < \varepsilon_1^{n-1}$$
 and $|\mu f|_{A_{n_1}}^{-1} - m_{n_2}| < \varepsilon_1^{n-1}$.

Let $B_1^n = A_1 \cup A_{21} \cup ... \cup A_{n1}$ and $B_1^1 = A_1$, we have

$$m_{n2} \ll \mu f \big|_{B_1^{n-1}}^{-1}$$
.

Now, we may decompose m_{32} with respect to m_{22} as $m_{32} = m_{321} + m_{322}$, where m_{321} is topologically singular and m_{322} is absolutely continuous with respect to m_{22} . Then Y can be partitioned into $C_0 \cup C_0'$ such that

$$m_{22}(C_0) < \varepsilon_2^1/2$$
, $m_{322}(C_0) < \varepsilon_2^1/2$, $m_{321}(C_0') < \varepsilon_2^1/2$.

Let $A_{321} = f|_{A_{32}}^{-1}(C_0)$ and $A_{322} = f|_{A_{32}}^{-1}(C'_0)$. Then A_{321} and A_{322} form a partition of A_{32} and we have

$$|\mu f|_{A_{321}}^{-1} - m_{321}| < \varepsilon_1^2 + \varepsilon_2^1 < \varepsilon$$

and

$$|\mu f|_{A_{322}}^{-1} - m_{322}| < \varepsilon_1^2 + \varepsilon_2^1 < \varepsilon$$
.

Letting $B_2^1 = A_{22}$ we have

$$|m_{22} - \mu f|_{B_2^1}^{-1}| < \varepsilon \qquad \text{ and } \qquad m_{22} \ll \mu f|_{A_1}^{-1} = \mu f|_{B_1^1}^{-1} \, .$$

Letting $B_2^2 = A_{22} \cup A_{321}$, we have

$$|(m_{22}+m_{321})-\mu t|_{B_2^2}^{-1}|$$

If we decompose m_{42} with respect to $m_{22} + m_{321}$ we obtain two finitely additive

measures m_{421} and m_{422} which are respectively singular and absolutely continuous with respect to $m_{22}+m_{321}$ and A_{42} can be partitioned into $A_{421} \cup A_{422}$ such that

$$|\mu f|_{A_{421}}^{-1} - m_{421}| < \varepsilon_1^3 + \varepsilon_2^3 < \varepsilon \;, \qquad |\mu f|_{A_{422}}^{-1} - m_{422}| < \varepsilon_1^3 + \varepsilon_2^2 < \varepsilon \;.$$

Let $B_2^3 = A_{22} \cup A_{321} \cup A_{421}$. We have

$$|(m_{22} + m_{321} + m_{421}) - \mu f|_{B_3}^{-1}| < \varepsilon,$$
 $(m_{22} + m_{321} + m_{421}) \ll \mu f|_{B_3}^{-1}.$

Similarly, if we decompose m_{n2} into m_{n21} and m_{n22} which are respectively singular and absolutely continuous with respect to $(m_{22} + m_{321} + ... + m_{n-1,21})$ we obtain a partition $A_{n2} = A_{n21} \cup A_{n22}$ such that

$$|\mu f|_{A_{n2i}}^{-1} - m_{n2i}| < \varepsilon_1^{n-1} + \varepsilon_2^{n-2} < \varepsilon,$$
 $i = 1, 2.$

Let $B_2^n = B_2^{n-1} \cup A_{n+1,21}$. We have

$$|(m_{22} + m_{321} + ... + m_{n+1,21}) - \mu t|_{B_0^n}^{-1}| < \varepsilon$$

and

$$(m_{22} + m_{321} + ... + m_{n+1,21}) \ll \mu f|_{B_1}^{-1}$$

So far we obtain two sequences, (B_1^n) and (B_2^n) of Borel sets in $\mathscr{D}(X)$ such that $\mu f|_{B_2^n}^{-1}$ is ε -approximately absolutely continuous with respect to $\mu f|_{B_1^n}^{-1}$. Furthermore B_1^n is a finite disjoint union of Borel sets: $B_1^n = A_1 \cup A_{21} \cup ...$... $\cup A_{n1}$, where f is one-one on each set A_{n1} . Also B_2^n is a finite disjoint union of Borel sets: $B_2^n = A_{22} \cup A_{321} \cup ... \cup A_{n+1,21}$, where f is one-one on each $A_{n,21}$. Moreover $\mu f|_{A_{n1}}^{-1}$ (i=1,2) is ε -approximately equal to m_{ni} , where m_{n1} and m_{n2} are respectively the singular part and the absolutely continuous part in the Lebesgue decomposition of $m_n = \mu f|_{A_n}^{-1}$ with respect to $\mu f|_{A_1 \cup A_{21} \cup ... \cup A_{n-1,1}}^{-1}$. In addition $\mu f|_{A_{n,21}}^{-1}$ (i=1,2) is ε -approximately equal to $m_{n,2i}$ where $m_{n,2i}$ and $m_{n,22}$ are respectively the singular part and the absolutely continuous part in the Lebesgue decomposition of m_{n2} with respect to $(m_{22} + m_{321} + ... + m_{n-1,21})$.

In the next step we decompose m_{422} with respect to m_{322} as $m_{422} = m_{4221} + m_{4222}$, where m_{4221} and m_{4222} are topologically singular and absolutely continuous with respect to m_{322} , respectively. We obtain the partition $A_{4221} \cup A_{4222}$ of A_{422} such that $\mu f|_{A_{422}}^{-1}$ (i=1,2) is ε -approximately equal to m_{422i} . With $B_3^1 = A_{322}$ and $B_3^2 = A_{332} \cup A_{4221}$ we see that $\mu f|_{B_3^1}^{-1}$ is ε -approximately absolutely continuous with respect to $\mu f|_{B_2^1}^{-1}$ and $\mu f|_{B_3^2}^{-1}$ is ε -approximately absolutely continuous with respect to $\mu f|_{B_2^2}^{-1}$. Now decompose $m_{522} = m_{5221} + m_{5222}$ with respect to $m_{322} + m_{4221}$, $m_{622} = m_{6221} + m_{6222}$ with respect to $m_{322} + m_{4221} + m_{4221}$

 $+m_{5221}$ and so forth, we obtain partitions $A_{522}=A_{5221}\cup A_{5222},\ A_{622}=A_{6221}\cup A_{5222},\ etc.$, such that $\mu f|_{A_{n22}i}^{-1}$ (i=1,2) is ε -approximately equal to $m_{n22}i$. Let $B_3^{\mathsf{n}}=A_{322}\cup A_{4221}\cup \ldots \cup A_{n+2,221}$. We see that $\mu f|_{B_3^n}^{-1}$ is ε -approximately absolutely continuous with respect to $\mu f|_{B_3^n}^{-1}$.

Continuing this procedure we can construct a double sequence

$$B_K^n = A_{K22...2} \cup A_{K+1,22...2:1} \cup ... \cup A_{n+K-1,22...2:1}$$

where the A's are disjoint Borel sets of $\mathcal{B}(X)$ satisfying the following properties:

(1) On each A, the function f is one-one.

$$(2) \ A_{n+K} {}_{22...2} = A_{n+K} {}_{22...2:1} \cup A_{n+K} {}_{22...2:2}$$
 $(n > K).$

- (3) $\mu f|_{A_{n+K},22...2:i}^{-1}$ (i=1,2) is ε -approximately equal to $m_{n+K,22...2:i}$ and $m_{n+K,22...2} = m_{n+K,22...21} + m_{n+K,22...22}$, where $m_{n+K,22...21}$ is topologically singular and $m_{n+K,22...2}$ is absolutely continuous with respect to $(m_{K,22...2} + m_{K+1,22...21} + \dots + m_{n+K-1,22...21})$.
- (4) $\mu f|_{B_K}^{-n}$ is ε -approximately equal to $m_{K,22...2} + m_{K+1,22...21} + ... + m_{n+K-1,22...21}$.
- (5) $(m_{K+1,22...2:2} + m_{K+2,22...2:21} + ... + m_{n+K,22...2:21})$ is absolutely continuous with respect to $m_{K,22...2} + m_{K+1,22...2:1} + ... + m_{n+K-1,22...2:1})$.
- (4) and (5) show that $\mu f|_{B_K^{-1}}^{-1}$ is ε -approximately absolutely continuous with respect to $\mu f|_{B_K^{-1}}^{-1}$.

We end the proof by putting $D_i = \bigcup_{n=1}^{\infty} B_i^n$.

References.

- [1] N. DINCULEANU, Vector measures, Pergamon Press, Berlin 1967.
- [2] N. Dunford and J. T. Schwartz, Linear operators, part I, Interscience, New York 1957.
- [3] F. Hausdorff, Set theory, Chelsea, New York 1962.
- [4] E. Hewitt and K. Yosida, Finitely additive measures, Trans. Amer. Math. Soc. 72 (1952), 46-66.
- [5] M. G. Nadkarni, Hellinger-Hahn type decompositions of the domain of a Borel function, Studia Math. 47 (1973), 51-62.
- [6] T. Traynor, A general Hewitt-Yosida decomposition, Can. J. Math. 24 (1972), 1164-1169.
- [7] J. Uhl jr., Extensions and decompositions of vector measures, J. London Math. Soc. (2) 3 (1971), 672-676.

Abstract.

Many problems related to countably additive measures have been extended to finitely additive set functions. For example, the Hewitt-Yosida decomposition was generalized to s-bounded finitely additive set functions by using a variation of the Caratheodory process. Previously the author has obtained generalizations of the Hewitt-Yosida decomposition and the Lebesgue decomposition to finitely additive vector measures satisfying some continuity condition. The present work generalizes a Hellinger-Hahn decomposition of the domain X of a Borel function (see M. G. Nadkarni, Hellinger-Hahn type decomposition of the domain of a Borel function, Studia Math. 47 (1973), 51-62) in the case where the measure μ on the Borel σ -algebra of X is only finitely additive.

* * *