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Riccarpo Rroccr (%)

Critical solution for neutron transport

)

in a cylinder with reflector (*%)

A Grorero SEstTINI per il suo 70° compleanno

1. - Introduction

In this work, we study the integral form of the stationary neutron transport
equation for an infinitely high cylinder surrounded by a symmetrical reflector
of finite thickness, embedded in vacuum.

The natural symmetry of our geometrical scheme allows us to reduce the
original tridimensional problem to a monodimensional one. By means of a
change of variables, involving the macroscopic cross-section and the average
number, we can seek solutions in a fixed functional space for every possible
choice of geometrical dimensions.

This space will be L2(0, 1) as well as ([0, 1]); in fact, we shall prove that
the solutions in L? all belong to C.

Finally, we shall prove that the eigenvalues are continuously and monoto-
nically dependent upon the physical and the geometrical parameters of our
problem.

2. - Preliminary remarks

Let R be the radius of the cylinder and & the thickness of the reflector.
Following [2], the physical properties are characterized by the total macro-

(*) Indirizzo: Istituto Matematico, Universitd, Viale Morgagni 67/A, 50134 Ii-
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(**) Lavoro eseguito nell’ambito del G.N.F.M. (C.N.R.). — Ricevuto: 5-XTII-1978.
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scopic cross-section 2 and by the average number of secondaries per collision e.
Since we -suppose both the cylinder and the reflector to be homogeneous, ¢
will be a two valued step function. For mathematical simplicity, we assume
that X' is constant in all the system.

We also assume that neutrons are monoenergetic, and the scattering and
the fission emission are both isotropic.

As the system is embedded in vacuum and we suppose that there are no
source of neutrons, the equation is linear [2]. In fact, after normalization,
we can write

1

(1) @) = [ [ye(y) T(x, y)]py)dy = Tp(),

0
where
e >1, 0<y <B/(R + R)

oly) =
<1, R/[R-+I<y<l,

(e, is the average number of secondaries in the cylinder, ¢, in the reflector), and

e exp [— o(@® 4 y* — 2ay cos 0 -+ 22)%)

7 = 10 d
4Tz, ¥) 6[ 2 2 g — ay 008 L 7 do d=

(0 = Z(R + n).
In order to find the solution of (1), we shall study the equation
}b(p = T¢ y

i. e. the eigenvalue problem for the operator 7, and then we shall discuss the
auxiliary equation

M2y By hyeqy0) =1.

3. - The transport operator

To study the operator 7, we start with the following inequality (for a proof,
see the Appendix)

(2) (@ +9) L, y) < oFofo|o—y]) @7#y),

where I, is the modified Bessel function of zero order [1], [9].
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Since Ky(z) ~— Inz as 2 — 0, [1], (2) ensures that the kernel [ye(y) I'(@, ¥)]
is square integrable in (0, 1) % (0, 1), so that the operator I': L0, 1) — L*(0, 1),
is completely continuous [8].

But we can show that I': C([0,1]) — €([0,1]), and it is completely con-
tinuous as well; to see this, it is enough to verify the following statements [4], [5]:
(i) for every = €0, 1], [ye(y)L(z,y)] is measurable with respect to y; (ii) for
every @ € [0,1]

lim } ye) | T + ¢, y) — T, y) |dy =

t—~0 0

Proof. (i) follows at once from (2). To verify (ii), we can apply Le-
besgue’s theorem on dominated convergence, because of (2). Then, we have
to show that

Hm|T(@ + ¢, y) — T(w, y) | =0 a.e. in [0,1]x[0,1].

{=>0

But, for # = v, and ¢ in a suitable closed neighbourhood of zero, the integral,
which defines T'(z, ), is uniformely convergent in ¢ and the integrand funection
is continuous. Hence, the limit is zero if @ 5=y, i.e. almost everywhere.

We now state the first important property of the operator 7.

Theorem 1. The operator T has a uwnique positive (continuous) eigen-
function. This eigenfunction corresponds to a simple positive eigenvalue, larger
in absolute value than all the other eigenvalues of 1.

Proof. Theorem 1 is only a trivial application of a modified statement
of Jentzseh’s theorem, due to M. G. Krein and M. A. Rutman [4], [5]. We
only have to show that 7' is of positive type, i.e. Tf(z) > 0 if f(#)>0, f not
identically zero. In fact,

Tio,g)>of2 | 2T LA

dz =1, so that

Tfw) > Iey | yi(y)dy > 0.

In the previous discussion, we have stated that T is completely continuous
both in L0, 1) and C([0, 1]). Obviously, the set of continunous eigenfunctions
is a subset of the set of L2-eigenfunctions. In fact, it is not a proper subset,
beecause we have the
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Theorem 2. If ¢eL*0,1) is an cigenfunction of T, then ¢ is continuous.

Proof.Westart by showing that 7 maps L2-functions into bounded functions

a

Zfw) |2 = ] yel9) @, 1)) dy
<iflicio* | Kiolo—y))ay,

because of (2). Now, since Iy(z) 2" =0 asz — 0, o« > 0, we have K2(o|w— y|)
<CH+ o7 |z—y|™, with 0 <a <}, and so

il + (1 — w)l——?a

| T'f() 1 _om 3

< A4+ B

where 4, B, and C are sufficiently large constants. Hence, if ¢ is an eigenfunc-
tion of 7, ¢ is bounded. Moreover, ¢ is the image of the bounded function
[A-*(#) c(=)] through the operator of kernel [yZ(x, )] (A is the eigenvalue of ¢).
[yT (2, y)] is a kernel with a weak singularity and maps bounded functions into
continuous ones [6]. )

‘We conclude this section showing that the operator 7' is continuous with
respect to each of the parameters X, R, &, ¢, ¢,.

Let 1", 1" two operator corresponding to two different sets of parameters.
Then,

1

1
< [ Ty @) T @y y) — " @) I (@, y))* dedy .
0

0

|7 — ]

That 7' is continuous with respect to ¢ = X(R 4 h) is easily seen by means
of Lebesgue’s theorem. This ensures the continuity with respect to X. The
same may be done for B and k; in fact, 7(z, y) depends on R (on k) through ¢
only, and, if ¢; and ¢, are fixed, the step functions ¢/(y) and ¢’(y) corresponding
to B’ and R" (4, b") differ only on a set of measure that approaches zero as
B'— R" (b — h"). The continuity with respect to ¢, and ¢, is trivial.

4. - The symmetric operator

We want now to state some further properties of the spectrum of 7. To
this aim, we introduce a symmetric operator § defined by the kernel

[(@y)*(e(@) o(y))! T, 9)] -
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It is easy to see that S is a completely continuous operator on L*(0,1), be-
cause of (2).

Moreover, the same procedure ensuring continuity of 7' with respect to
the parameters, can be used for S.

The usefulness of § lies on the fact that § and 7 have the same spectrum.

In fact, it Ap(@) = To(@), f(@)= (ve(»))tp(r) is square integrable, and
M(x) = Sf(x). On the contrary, if Af(») == Sf(»), we have to show that

(:w( @)~ "f(w) is square integrable. ’

As we proved for T in Theorem 2, we can easily show that Sf(z) is bounded,

and so f{z) is bounded too. Moreover,

p(w) = f(a)(we(z)) j %w(wwanMW/ﬂ[fKKﬂr—vDy(W,

where M is a suitable constant.
Now, using Schwarz ineguality with K, e L* and y~* e I}, we have

@) (we(x)) | < MA**( fl Ky(ole—yl)* dy)**

and, if 0 < e < 1/3, then

rvl-!}(x + (1 — /L)l——flOl
1—3c

b

lp@)| <4+ B( )V
with A, B constants .

A first consequence of this equivalence is the continuity of the eigenvalues
of 7' upon parameters.

Theorem 3. The eigenvalues of T (of S) are continuous functions of X,
B, by ¢, €.

Proof. Such a result follows from the continuity and the symmetry of S.
In fact, see [8], |1 — A |<|8'— 8], (n=1,2,...). The following further
properties can be established

Theorem 4. The etgenvalues of T are a countably infinite set of positive
numbers, and the first eigenvalue is smaller than ¢, for every I'y R, h, c,.

Proof. Theorem 4 is a direct consequence of the two following proper-
ties: (i) S is positive defined, i.e. (Sf,f) > 0 if 5= 0; (i) |8 < e
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To show (i), we use the following integral formula, which will be proved
in the Appendix ’

400
T(z,y) = [ otan—t (/o) Jy(xt)dy(yt) At ,

0

where J, is the Bessel function of zero order.
Now, let fe L0,1), |f[ =1,

1

51, 1) = f JRCIRCEEE (o bam=1 (1f0) y(at) Jo(yt) dt) () () e ly

= T’atan—l (to) i1 (fl (@) J(@t) () f(2) dw)2 dt .

The function in parentheses is the Hankel transform of the function (e(@)g()),
where

gl@) =flx), O<o<l; g@)=0, a>1.

So it follows that (S7,f) > 0 if f is not identically zero.
It remains to justify the interchange of the order of integration. To this
aim, it suffice to show that: if 4 > 0, then

| F san= (1) Ty(wt) To(yt) gyt e = T(a, )

is dominated by an integrable function of (»,%) in (0,1)x(0,1). In the Ap-
pendix, we have proved that :

4o 1 27 oo
Oj tan—1 (o) Jo(wt) Jo(yt) dt = oy 6[ _fm tan~1 (¢/o)Jo(wt) A0 dt ,
where w? = x? + y*— 2y cosf.
Integrating by parts, we have
w2 do

I(@, y)<M Of (1 — (day/(@ + ) sen26)?’

where the elliptic integral has a logarithmical singularity for @ = v, [3], and
50 it is integrable.
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As far as (ii) is concerned, since ¢ tan! (i/o)t-1<<1, we have (Sf,f)
+oo
<6 [ G¥t)dt, where G(t) is the Hankel fransform of g(x). As g(z) € L*0,-} o)

0
and ¢l s, +00y= Il 20,5y = 1, and the relation between the Hankel transform
and the bidimensional Fourier transform, [7], gives |G| = Jg], so [8]<e,.
Moreover, the preceding inequality holds in a striet sense. In fact, by a
simple calculation, and using some properties of Hankel transform, we have

[Sf<ei—(ei—e) [ o¥a)dw,

Rf(B+R)
where ¢ is the first eigenfunction of § (of T') and

1
@*a)de >0
RI(R+R)

according to Theorem 1. This coneludes the proof of Theorem 4.

5. - The stationary solution

We can now state the existence of stationary solutions.
In fact, we have lim A; = 4 oo, and 1; <e¢;, so that, if ¢ =1, then

¢y->+o0

Ay <1. Then Theorem 3 ensures the existence of a solution of (1), because,
for every X, R, h, ¢,, there exists a ¢; € (1, + oo) such that 2, = 1.
But, a more interesting result can be proved.

Theorem 5. The first eigenvalue is an increasing funciion of the para-
meters 2, R, h, ¢;, and c,.

Proof. Consider first ¢ = 2(R 4 h).
Let ¢ > ¢’ and 8 = 8(0), §'= S(¢') the respective symmetric operators.
Then (S8 — §') is positive definite. In fact, we have

, oo
(8= 81, 1) = [ (stan= (/o) — ¢’ tan—1 (t/o”)) 1 F2(2) At ,
0
where F(t) is the Hankel transform of (e(#))!g(x) as in Theorem 4. Since
o tan~? (t/o) > ¢’ tan~* (t/o’), we conclude that ((8— 8")f,f) >0, if f is not
identically zero. So it follows

2(0) — (o) = (8¢, ¢') — (89", ¢') = (8 — 8¢, ¢') > 0,
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where @' is the first eigenfunction of §'. (We note that also 1,(c)> Z.(¢"),
n=2,...,[8]). Hence, 1, is a strictly increasing function of .
Assume now that ¢, > a{, (&, R, hy ¢, are fixed) than we have

R[R+h RIR+N

Me)shE) + T [ @) T, y)e— ¢)g'(@)p' (y) dedy

0 0

BIR+R 1

+ 2§ [ (ay) T, y)((ere2)t — () ¢2)}) @' () @' () A dy ,

0 RiR+VR

it follows that A(¢,) > }.1(0;), because of Theorem 1. The same property ob-
viously holds for ¢,. Finally, let & > k' (the other parameters are fixed) and

(s/s")Vig (smfs'), O<aw<s'[s,
flz) =
0, s'ls<ae<l.

with s = R -+ b, and s'= R -+ &/

Due to Theorem 1, 4, > (8f,f). On the other hand, by a simple change of
variables, we have (8f,f) = (8 ¢', ¢’), and so Z4,(h) > A4,(A'). The same pro-
cedure can be used for R. In this case, f is defined as before with s = B+ &
and §'= R’ k, and we have (Sf,7) > (8'¢/, ¢').

As an immediate consequence, we have

Theorem 6. For every choice of four of the five parameters, the equation
Ay =1 implicitly defines one and only one value of the fifth parameter, that solves

the stationary problem.
So, every parameter is a continuous decreasing function of the others.

Appendix

I. - To show inequality (2), we let a2-fy?— 2zy cos 0422 = w?t22,

2t _ 2 AT ‘ 2m 10
I(z) = Of expl w(:(j_o ;L GMEY <exp [—o((x—y)* -+ 2%)1] df wgc+ e

o 2mexp [~ o((@—g)* + )]
T (@—yr 42 @+ g+

Hence, 19 2T 0 [ ollo )4 £

< - et But
vty (@)t
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+F° exp [— o((@ — )2 + 23)1]
=50 (e —y)* -+ 2?)?

dz = 2 _[ exp [—ola—y|cosht]| W=2K,(c|o—y}),
[

o
[1], and so T(w, y/)<m1(0(a§m—y1).

II. — A more involved proof is needed for the formula at the beginning
of Theorem 4.

We start by showing that, if « > 0, then

+oo + 02
—}t [ Ko(e)dz = | tan—1tJ,(at)ds
o .
+o0
By using the Hankel transform, [7], we have K,(z) = f’uJ(, (u) (#2421 du
and so, if 0 <a < B <+ oo, then
B
[ Ky(z)dz = d j M‘l du j Jo(u) {tan-1 (zfu) |5} du

+o00

+eo
= [ Jo(u) tan—1(ufa)du — [ Jo(u)tan— (u/B)du .
0

0

+oo
(Note that the above integrals exist, because f Jo(u) du = 1).
It remaing to prove that lim J" Jo(u) tan—1 (u/B ) du=0. Now, if > A4 >0,

B—+too 0

Jo(u) = (2[nu)*(cos (u— m/4) -+ f(u)) where |f(u)| < M[u, M constant, [1], and so

+oo 4
[ Jo(u) tan— (u/B)du = [ Jo(u)tan— (u/B) du
[

f ‘mn—l u/B)( ) cos (u — z/4) du fmn“l (u/B) (—) flu) du ,

where the first integral is obviously convergent to zero as B — - co; as far
as the third integral is concerned, Lebesgue’s theorem can be used. Finally,
the second integral is equal to

+o2 tan—1 (u/B)
T e

tan—! u/B) Ysen (u — sen (w —mf4) du

— }m(g——)‘-‘ sen (u — n/4)

du
4 T + !
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where the first term approaches zero as B — + co; for the second, Lebesgue’s
theorem is used again. The same theorem can be used for the third, because
max B/(B* -+ «?) = 1/2u. Now, by using the integral expression of K,, we
can write

2 o o oxp [~ o(w? 4 22)F +oo
= G{ Ko(z)dz = J L w(+ o }dz = 2¢ b[ tan— tJy(owt) df .

It remains to integrate with respect to 0 in (0, 27), and the order of inte-
gration has to be interchanged. To this aim, we look for a dominant integrable
function, using asymptotic expression of J,, just as in the above caleulation.
Then Lebesgue’s theorem can be used again. Thus, we obtain

+co 2n
dnl(z, y) =20 [ tan~t(tfo){ [ Jo(wt)d0}at.
0 0
Since Jy(wt) can be expressed using Neumann’s addition theorem [9], for z v,

To(wt) = Jol@t) To(yt) + 2 S T () To(yt) cos (n0),
n=1
and
1 es

J»,,(Z) ~ (—"2*'7;7)_} (2_/)1,) as n —oo ,

we can integrate term by term, and so

T(a,y) — o | tan=t (t)o) () Tolyt) d .
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Sommario

Si considera Uequazione integrale stazionaria per il trasporto di neutroni nel caso di
un cilindro di altezza imfinita con riflettore. La simmetria del sistema consente di riduire
il problema al caso unidimensionale. L’operatore di lrasporto & lineare, a nucleo non sim-
metrico. Questo operatore & completamente continuo, sia in C che in L. Si dimostra inol-
tre Uequivalenzo delle soluziond in questi due spazi funzionali. Infine, si stabilisce la dipen-
denza monotona di ogni parametro, sia fisico che geometrico, rispello ad ogni altro para-
melro caratterizzante il nostro problema.
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