Riv, Mat. Univ. Parma (4) S (1979), 577-589

G. Ricc1 (%)

P-algebras and combinatory notation (**)

A Grorgio SEstTINTI per il suo 70° compleanno

0. - Introduction

0.0. - Motivation. The domain of a (homogeneous) operation is built
from the carrier set by set-theoretic constructions which usually are cartesian
products or (set-theoretic) exponentiation. An elementary question thus arises:
what happens when we change these constructions ?

We consider the case of the power-set construetion, namely when the
domain of an operation is the set of all subsets of the carrier set. A somehow
similar case is outlined in {7], but here we look at almost all the elementary
results of Universal Algebra. Namely we consider congruences, homomorphisms,
direct products, polynomials and equationality together with their usual
relationships.

The power-set case is interesting for two reasons. Tirst, because there are
well-known operations of this kind, e.g. complete lattices and choice functions.
Thus, we have a chance to check the meaning of the results sought by applying
them to these well-known operations. Second, because the power-set of the
carrier set can be thought of as the set of characteristic functions of the sub-
sets of the carrier set. Hence, we have a special case of another set-theoretic
construction for the domain of an operation, namely exponentiation of an
(auxiliary) set to the carrier set.

(*) Indirizzo: Istituto di Matematica, Universitd, Via Universitd 12, 43100 Parma,
Ttaly.
(**) Lavoro eseguito nell’ambito del G.N.I.LM. (C.N.R.) (1974). — Ricevuto:
11-1-1979.
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0.1. — Results. The answer to the guestion in 0.0 is « nothing happens,
as far as the power-set case is concerned ». In fact, all the ordinary defini-
tions can be easily extended and the corresponding theorems hold. Moreover,
their application to well-known cases yields sound statements. For instance,
choice functions cannot be equationally characterized, whereas complete lat-
tices are characterized by a «single law » (generalized idempotency) which re-
places the two-laws characterization (generalized associativity and simple
idempotency) of [1].

In the power-set case we also add some straightforward result about the
recognizability of polynomials (e.g. about recognizable sets and congruences
over the algebra of polynomials). We do not give results about regularity
both because it seems technically too close to the corresponding results for
ordinary algebra as in [9] and because all this topic would need a preliminary
investigation about its practical applications and its relationship with other
topics (a regular expression here should denote a set of « nested possibilities »).

As far as further extensions are concerned, we simply outline two cases.
The former involves the power-set construction together with ordinary con-
structions. This yields no surprises. The latter involves exponentiation with
the carrier set at the exponent. Here, we find systems richer than the or-
dinary ones.

A final remark. Due to our notational conventions as in 9.2, many defi-
nitions and theorems are slightly reworded with respect to ordinary formula-
tions (e.g. see [4]). For instance, most our theorems simply involve the use
of the combinator C in its «functional interpretation » [2] rather than the
usual longer formulations.

However, conciseness or elegance are minor motivations for this rewording.
Rather, we try to suggest that at least in the Universal Algebra field a Com-
binatory Logic approach could face the categorical one. If this conjecture
should be true, a more developed Combinatory Logic will analytically match
Category Theory (in the same way as Analytic Geometry and Synthetic
Geometry do).

0.2. ~ Notation. Set notation is as in [3], except for the empty set
which here is denoted by 6. Moreover B4 denotes the set of functions from A
into B and 7-s denotes the composition of relations s and » (usual reversed
notation).

Functional notation for application follows [2], e.g. abe denotes the value
at ¢ of function ab (where ab is the value at b of function a), whereas a(be)
denotes the value at be of function a. To say fe B4 we also write f: A — B.
Moreover, as usual, f: A |- B, f: A » B and f: A > B denote an injection,
a surjection and a bijection respectively.
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To handle functions, we also use « combinators » as described in the table
below. Some of these, indeed, are classical combinators (perhaps partly
« typed » [5]) with their functional interpretation (C and a case of By). Others
do not, because they act on sets which need not to be functions. (Anyway,
when we speak of combinators, we do not understand the classical combina-
tors with their abstract reduction properties, but our extended ones with the
given interpretations).

Cf Forf:A4A — (C% it is the function Cf: B — C* such that Cfba = fab for
all ae A and b e B. (Clearly, C is one to one whatever A, B and C are).

Bye Tor ¢C AXB, it is the relation ByeC A% x BY defined componentwise
from ¢, i.e. for all a: X — 4 and b: X — B, <a,b) € Bye iff {az,bx>ce
for all e X. In particular, for f: A — B, Byf: AY — B*¥ and, for
g: X — A, Befg = f-g.

¢t For eC A x B, it is the function ¢': P4 — PB such that ¢’ A’= {b|<a,b> e
andee A’} for all A'C A.

F*  For FC B4, it is the function F*: 4 — PB such that F*a = {b]|<{a, b> €
efeF} for all ae A.

The above arrows act as «postfix » combinators, namely ab® means (ab)!
and not a(b). Similarly, composition has lower priority than application,
namely ab-cd means (ab)-(cd).

Finally, the product of a family 4:I — PB of sets is denoted by H A,.

I

Thus, this is a (bastard) A-notation with type. (Others will be introduced in
the following sections).

0.3. - Notions assumed. We assume some familiarity with set-
theory [6], with lattice theory (complete lattices only) [1] and also with the
rules related to the combinators introduced, in particular with the following
ones. (Quantifications are understood).

(1) (hk)T — hT.kT’

(2) ) =f,

(3) C(a-b)e = Cac-b,
4) Ca'btc = ac'h.

Also some Universal Algebra is assumed.
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1. - P-operations

This section contains the basic properties of P-operations, namely those
concerning homomorphisms, congruences and direct products. It also in-
troduces F-operations which are similar to ordinary operations and will be
helpful later on.

1.0. — Definition. A P-operation on the set A4 isafunction f: P4 — A.

1.1. — Definition. A congruence of f as above is an equivalence ¢ over 4
such that, for all 4’ A"C A4,

(8) ' A'=¢e'A" implies <(fA',fAd")ee.
The set of congruences of f is denoted by 6.

1.2. — Theorem. The above set Of is closed under intersections. (Thus it
forms a complete lattice ordered by inclusion).

Proof. Let ECOf. For all eec B, NE'A'= NE'A" implies ¢'A'= ¢’ 4",
because NE Ce. Hence using (5) for all ee E, we get {fA',fA">en K.

1.3. — Definition. Given P-operations f: PA — A4 and ¢g: PB - B, a
homomorphism of f into ¢ is a function h: A — B such that

(6) hef=ght.

As usual, when kb is onto, ¢ is called a homomorphic image of f. The set of
homomorphisms of f into g is denoted by Hfg. Clearly, by (1), Hff forms a
monoid under composition (the endomorphism monoid of f) with the identity
as unit.

1.4. — Theorem. (Notation as above) Given f, h is « homomorphism for
some g, if and only if h induces a congruence of f.

Proof. («If») Since h'4'= h'A" implies the hypothesis in (5), equation (6)
can be used to define g on A'A.

(« Only if ») Let ¢ be the equivalence induced by h. Assume ¢ TA'= ¢'4".
Then, h'4’'= RtA”. Therefore, by (6), h(fA') = h(fA") and we get (5).
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1.5. - Definition. Given f and ¢ as in 1.3, f is a suboperation of g if
/€ g (i.e. if h is the identity). Clearly, given f, ¢ and k, there always exists a ¢
which is a homomorphic image of f and a suboperation of g.

1.6. — Definition. The direct product of a family ge H A4 of P-oper-

ations is the P-operation II g;: PB — B, where B = H Ay, such that, for all
DCB and jed 7

(7 I g, Dj = gj(D'j) .
J

1.7. — Theorem. Given P-operation f and family g as above, consider the
function C' such that, for each family of homomorphisms h e HHng , C'h =Ch
(in other words €' is a typed C). Then

(8) ¢': T1 Hig, 1 Hf Mg, .
J J

(Trivially, €' can also be defined as the relation such that
9) (h,kye C" it pj-k=»h forall jed,

where pj is the j-th projection, i.e. pjb = bj for all j € J and b € B, see also C*
in [2]. Thus by (9), (8) yields the customary universality property of direct
products).

Proof. Since €' is one to one by defin.tion, we only have to check the
codomain. This is to say that Ch-f = (Il g;)-Ch! is equivalent to hjf
J

= gj-Ij" for all jeJ. This follows from (7) by easy combinatory passages.
(Use (2), (3), (4), (7) and a bit of applications; shake well). For instance apply
pj-C to both sides of the former equality. The left-hand side of the former
equality becomes the left-hand side of the latter by (2) and (3), while right-
sides are equal because of (7), which by (4) for D = Ch'A’ implies
C(ILg,)j-Ch' = gj-1j* for all jed.

J

1.8. -~ Comment. If we say that a function f: A* — 4 is an «F-oper-
ation » on 4, then all definitions and theorems of this paper can be restated in
terms of F-operations. (When set R is an ordinal these are ordinary homo-
geneous operations of universal algebras [4].)

We will need to make reference to the F-case. Thus we will use the postfix
«-F» in order to mention the definitions and theorems corresponding to
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F-operations. TFor instance, L.7-F will denote the theorem on the universality
of a direct product of a family of F-operations.

The same convention is assumed for the formulae. These are obtained by
a proper replacing of combinators (B, replaces { and C replaces |). For in-
stance (5) becomes: for all &', a": R — A

(5-F) e-a'=e-a" implies <fa',fa">ece.

We also have

(6-I) h-f=g-B,h

and

(7-F) H:gjdj = gj(Cdj) for all d: R - B.
J

(Note that (4) disappears because of (3) and (2) while (8) and (9) remain as
they are.)

2. - P.algebras

What said for single P-operations can be restated for each element of a
family of P-operations. Hence, definitions and theorems of section 1 extend
over such families (or « P-algebras») simply by adding a quantification (over
the index of the family). Thus, most of this section (from 2.1 to 2.7) reduces
to a reference table. We only add the notion of a variety of P-algebras and an
oufline of further extensions.

2.0. — Definition. A P-algebra on A with alphabet X is a function
o: X — AP, (In 2.0-F we also need a «rank» function or « species » » with
domain 2 in order to write o€ I1 A4° for an F-algebra).

2.1. — Definition. Congruence of a P-algebra «. Set of these denoted
by O,.

2.2. — Corollary. Intersection closure and lattice of congruences. (Nute

that O, = O,.)
Py

2.3. — Definition. Homomorphism between P-algebras o: X —> 474 and
p: 2 — B™. Homomorphic image. Endomorphisms. Set of homomorphisms
denoted by Hef.
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2.4. - Corollary. Correspondence amony congruences and Lomomorphismms.,

2.5. — Definition. Subalgebras of P-algebras.

2.6. — Definition. Direct product of a family of P-algebras.
2.7. — Corollary.  Universality property of the direct product.
2.8. - Definition. A variety of P-algebras is a class of P-algebras with

the same alphabet which is closed under homomorphic images, subalgebras
and direct products.

2.9. — Comment. Since all results of this paper hold both for F-algebras
and for P-algebras, one can trivially mix them and get homogeneous algebras
with operations of both types (or also of the ordinary type f: A* — A, n being
a natural number). Moreover, composition of types also is possible, e.g. one
could possibly get an operation f: P(A x 4) — A taking relations (or graphs)
as arguments.

The trick for handling composed types is still combinator replacement.
For instance, let f: P(A") — 4 be a « BP-F-operation », then we have homo-
morphisms defined by

(6-BP-I) h-f=g-B,ht
Note that these extensions depend on the corresponding extensions of (1),
e.g. (1-BP-F) is B,(h-k)' = B,1'-B,k". (Postfix conventions as in 1.8.)

3. - Polynomials

Symbolic polynomials (« terms») form a P-algebra which is related with
the algebra of polynomials (the « extension ») of a given P-algebra in the same
way as for the ordinary case. Also the representation theorem for the endo-

morphism monoid of the term algebra continue to hold.

3.0. — Definition. Given sets X and X, the «set» T of the P-terms
over 2 generated by X is (recursively) defined by

Xcr,
(10) SXPTCT.

(Note that in (10-F) we have U {0} x T C T). The depth It of a P-term te T
P
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is the length of its recursive generation, i.e. it is the ordinal given by the funec-
tion [ defined by: Iz =0 for all e X and Ko, D> =1 4 u('D) for all
cel and De PT. Depth recursion will be used in most of the definitions
and theorems of this section. (Here, «recursion» is transfinite recursion).

3.1. ~ Definition. The term P-algebra over X generated by X is the
P-algebra 7: X' — T77 defined by the « operation » of making pairs, i.e. oD
= (¢, D) for all 0 € X and D e PT.

3.2. — Definition. The ewtension of P-algebra «: X —» AP4 ﬁom 2to T
(as above) is the F-algebra &: 7' —> A4%) defined by

ava=ar forall a:X >4 and =zeX,
(11)  &<o, DYa = ao(&'D*a) for all (¢, D>e T and a: X — A .
3.3. — Theorem. Given « and = as above, Ci: AX ||+ Hre.

Proof. From 3.2, Ca: A% — A”. Moreover, for all a: X — A, Caa is a
homomorphism because of (11) and (4), namely Cé&a(roD) = &{s, D>a
= oo (&' D'a) = ao(Caa' D) for all D e PT.

Conversely, if h € Hra, take a: X — A being its restriction to X. Trivially,
Céax = hw for all v e X. Morveover, if Céa'D = D, we get Caalc,D)>
= ao(h'D) = h(zoD) = h<e, D} for all ¢ € 2. Hence, by (transfinite) induction
we get C&a = h, while the uniqueness of the @ chosen is trivial.

3.4. — Definition. Given o and 7 as above and a family a: X — A, the
homomorphic image of 7 under Cae will be called the subalgebra of « con~
nected with a.

3.5. — Corollary. Witk the above notation, Cé: A¥ |+ Hi&, where H de-
notes homomorphisms between I'-algebras. (Thus, &(Fit')a = at(Can-t') for all
tel, t: X - T and a: X — 4).

Proof. Routine (e.g. induction on the depths in the alphabet of 7).

3.6. — Definition. Given 7 as above, its r-c product (see 3.8) is the
operation o: % x 7" — T defined in infix notation by "ot = C#t’-t' for all
¢,1": X — T (namely ("ot')2 = #(t'®)t"). By the next theorem, this defines a
monoid (see [9] for the F-case).
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3.7. —~ Theorem. C7% is an isomorphism between the r-c product and the
(composition of the) endomorphism monoid of .

Proof. From 3.3, Cf: 1% |~ Hrr. Thus, we only have to prove
Ci(t'o t") = C7t'- C#t” for all ¢',1": X — 7', which follows from 3.5. (Set « = 7
and abstract the alphabet letter.)

3.8. — Comment. «r-c» should mean rows by columuns. (When defini-
tion 3.6-F is extended to free algebras, one can apply it to vector spaces and
get matrix multiplication « rows by columns».) The most natural definition
would have been columns by rows, ie. t'ot’ = CFt’-¢'. However, an r-¢ pro-
duct fits our (reversed) notation for composition better, as seen in (¢ represen-
tation ») Theorem 3.7.

3.9. - Comment. «Set» 7 in 3.0 is a proper class. Though this yields
no big troubles till 3.3, starting from 3.4 we need some care. For instance,
A" = 0, when common set theory [6] is used. As usual, we can mend the
situation either by introducing a universe [6] to make 7 a set (e.g. PA becomes
the set of subsets of A which are in the universe) or by allowing classes to be

members of (hyper)sets or of (hyper) classes [3].

4. - Recognizability and equationality

We first extend Nerode’s theorem about the recognition of terms. Then
we characterize the identities of a P-algebra by the r-¢ product and the varieties
in terms of equational classes. TFinally we consider further extensions (of P-al-
gebras) which have a richer system of homomorphisms.

4.0. — Definition. (Notation as in 3) The equivalence over 7 recognized
by o starting with (or with initial family) a: X — A is the equivalence induced
by Céa. A union L of blocks of the corresponding partition will be called a
set recognized by o starting with a.

4.1. - Corollary. An equivalence is recognizable if and only if i is «
congruence of ©. (HMoreover given L as in 4.0, we can find a finite o« recognizing

@t 2ff the corresponding partition is finite.)

Proof. Sece 3.3 and 2.4.
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4.2. - Corollary. Let f and « recognize ¢ and ¢ starting with b and «
respectively. Then, there exists a homomorphism h from the subalgebra connected
with b into o, such that h-b = a, if and only if ¢'Ce".

Proof. («Only if») Trivial. («If») Build & by Céa = k- C Bb.

4.3. — Definition. Given « and 7, the set of identities I over X satis-
fied by o is the equivalence induced by & on 7. In other words I« is the in-
tersection of all equivalences recognized by « (for any initial family a: X — 4).
Similarly, if ¢ C I, we will say that « satisfies e. Thus, given a class I of P-al-
gebras over the same alphabet, the set I, = N (I'K) will be called the set
of identities (over X) satisfied by K. (Dirty tricks as in 3.9 are allowed).

4.4. — Theorem. A set of pairs eC T XT is a set of identities (of a single
P-algebra or of a class) if and only if Bye is a congruence of the r-¢ product.

Proof.(«only if ») By 2.2-F it is enough to prove the statement for a set
of identities Ioe of a single P-algebra. By 1.4-F, this is to say that By& de-
termines a homomorphism from the r-¢ product or also that its composition
with € is another homomorphism. Thus, we can show that the function
o' s T¥ — (A%)4 defined by o'tar = (Cia-t)a = a(tx)a for all t: X - T, a: X — A
and e X is & homomorphism from the r-¢ product into another (binary)
operation.

If for the target operation we choose the commuted composition ., namely
feg=g-f for all f,g: A¥ — A% (see 3.8), then 3.5 yields our desired result:
o' (f'et") = o't o't (apply @« and x to both sides of this equality and set
t'e =t).

(«Xf ») Being B e a congruence (of the r-c product), a fortiori it is a «left »
congruence, namely ¢ is a congruence of 7. By 2.4, 3.3 and 3.5, ¢ also is a con-
gruence of 7. Thus, by 2.4 we can define an « which is a homomorphic image
of T by some h: T » A.

We only have to prove that ht = hd iff &t = &d, since Bye is induced by
Byh. The «if» is trivial, since h = Cda for some a: X — 4. The converse,
ht = hd implies atb = adb for all b: X - A, follows from the connectedness
of & to @ (i.e. any b is Cga-t' for some ¢': X — T') and from 3.5. In fact, since
Byh induces a congruence, ht = hd implies h{7it') = h(7dt’) for all ¢': X — T
(this is to say that Bye is a «right » congruence).

4.5. — Definition. A class I{ of P-algebras is equational if it contains
all P-algebras which satisfy I, for all X (as in 4.3).
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4.6. ~ Example. This perhaps is the easiest non-trivial set of identi-
ties I, defining a non-trivial equational class K. Take a singleton alphabet,
2 = {A}, and «P-idempotency » (to define the identities). Namely, two terms
over X are identical simply when they have the same subset of generators

(12) (el iff gt =gt

where @: T' — PX (a «frontier » function) yields the subset ¢t of the 2’s effec-
tively used in (10) to build ¢ (Clearly, this defines a congruence of the r-¢ pro-
duct. Moreover, P-algebra o« of the «if» part in 4.4 is just union:
a: {A} = PXP0, gp = U and ¢ = h = Cda, where a: X— PX is just the
natural mapping of the identity, ax = {#} for all » e X).

Equational class K is just the class of complete lattices. In fact, the single
condition (12) is clearly equivalent to the pair of conditions used to characterize
complete lattices [1]: A-AT= A-U and Af{a}=a for all ac A (where A de-
notes any oA). (In 4.6-F we substantially get the classes of semigroups and
monoids depending on the choice of #.)

4.7. — Theorem. A class of P-algebras is equational if and only if it is
a variety.

Proof. («Only if ») Trivial. (« If » part) Let K be a variety with alphabet 2.
In order to show that any « which satisfies I (for all X) is in K, we first in-
troduce an intermediate construction (usual free algebra construction).

Given X, let JCO, be the set of congruences induced by C&e for all
@: X — A and all ce K. For each jedJ let hj be a homomorphism chosen
among those inducing j and let yj be the corresponding homomorphic image
of 7. Since K contains its subalgebras, we thus have a family y:d - K of
P-algebras and a corresponding family % of homomorphisms, he[] Hry,.

J

Let f: 2 - B™ be the direct product of y which again is in K. Thus,
IxCIf. Moreover, since Iy = N J and since by 2.7, IfCj for all jed, then
IfC1; and we conclude I, = IB.

Taking the restriction b of Ch to X, we have an initial family b: X - B,
such that § recognizes I = I, and the corresponding subalgebra §': X — B'?*
connected with b. Thus f'e K for all X.

Now, consider any o: X — 4P4. Taking X = A and a: X — 4 to be the
identity, by 3.3 we have a homomorphism C&a: T - A of v onto o, which
induces a congruence ¢2 Iu. If « satisfies Iy, i.e. Ja2 I x, then e¢2 If. Thus,
we can apply 4.2 and get a homomorphism from ' onto «. Hence « € K.
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4.8. —- Example. After giving an example of a variety in 4.6, we now
give an example of a elass which is not a variety. Consider the class of choice
functions, i.e. the functions e¢: P4 — A such that c¢d'e 4’ for all nonempty
A'C A. This can be thought of as a class of P-algebras over a singleton al-
phabet and clearly it is closed under homomorphic images and subalgebras.

On the contrary, direct produects do not preserve the above membership
property. Take a family of two identical choice functions with A = {0, 1}
and e¢4d = 1. Then, the membership property for their direet product fails
when one considers the diagonal set B’ = {<0, 1), {1, 0>} (where pairs denote
the corresponding binary families). Hence choice functions cannot be equa-
tionally characterized.

4.9. — Comment. After considering P-operations and F-operations, we
should consider « CF-operations », namely functions of the type f: B4 — 4.
This seems more. difficult than the P-case. A problem is that in (6) we need
not to replace the (postfix) combinator 4 by (another) single one.

When R = {0,1}, for instance, we can still have a combinator Y such
that, for all ¢: A — R and be B, Yhad =1 ff aa’'=1 for some « such that
ha'=b. (This is what 4 does, when thinking of B4 as the set of characteristic
functions in P4). But, we can also have a combinator Z such that Zhad =1
iff the same holds for all such a'.

However, this freedom cannot be too large. For instance, if ¥ is the com-
binator chosen for & € Hfg and Z is for k € Hgm, then we must be able to choose
a combinator V for k-kh such that Zk-Yh = V(k-k). In fact, if we want to
compose homomorphisms, we also need such an extension of (1).

Anyway, the real problem here is to find good reasons which legitimate &
study of such CF-operations. Two possible hints are the following ones.

First, there are well-known CF-operations equipped with sound homomor-
phisms. One of these is the operation of taking the barycenter of a configura-
tion (e.g. a configuration of weights an a square can be projected onto a con-
figuration of weights on a side of the square while preserving the barycenter).
Another one is maximizing a function(al) on a certain domain (consider the
optimality prineiple of Dynamic Programming).

Second, the ability of handling CF-operations can be preliminary to the
study of more general « combinatory » operations. A combinatory operation
of type G on a set 4 could be defined as a function f: GA — A where G is
2 « set-combinatory » term (which we will only exemplify here).

For instance, when G = FR we have an F-operation as in 1.8 (¥ stands for
set exponentiation), when G = P we have a P-operation, when G = CFR
we have a CF-operation, when G = WJF we have an operation of the type
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f: A4 — A and so on (see [2] for W and note that the above f can also have
different types as FA or CFA).

It could be interesting to see how much of ordinary Algebra can be ex-
tended to these combinatory operations (e.g. homomorphisms, polynomials,
recognizability and equationality). Perhaps, one to one combinators will still
be able to express the main theorems in the same way as C or By do in the
present treatment. A (naive) formulation of such a conjecture is in [8].

I wish to thank M. Servi who gave several references to me.
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Abstract

P-algebras are families of P-operations (wheve a P-operation 4s just a funclion from
the subsets of @ set info ils elements). P-algebras have almost all the properties of ordinary
(homogeneous) algebras. In particular, (closed) varielies turn out to be equational classes.
Complete lattices form a straight-forward example of such varielies (they ave equationally
defined by o single trivial property).

The notation introduced in order to handle P-alyebras is an extension of sei-theoretical
notation close to Combinatory Logic. It expresses many constructs in definilions, state-
emnls and proofs in a standard way (e. g. by type assignmenis of a peculiar Fkind).
Moreover, going from P-algebras to ordinary universal algebras or similar systems simply
involves some easily defined notational transformalions.
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