F. MIGLIORINI and J. SZÉP (*)

Equivalences,
congruences and decompositions in semigroups (**)

A GIORGIO SESTINI per il suo 70º compleanno

Introduction

In 1 an equivalence relation ρ_a is considered in a semigroup S which is useful in different lines (magnifying elements, topological semigroups, etc.) and we study some basic properties of this equivalence. In 2 we assume that S has a subsemigroup \overline{S} with given property and we show that ρ_a is a congruence relation and we introduce a quotient semigroup of S.

In 3 necessary and sufficient conditions are given in order that \overline{S} be a subsemigroup of S with prescribed property.

Remark. $K(S)$ will denote a minimal ideal of S, $E(S)$—the set of all idempotent elements of S. Moreover, if A, B are subsemigroups of S, then $A \subset B$ means that A is a proper subset of B.

1. Let S be a semigroup.

Definition 1.1. Let $a \in S$. We define a relation ρ_a by

$$x \rho_a y \iff ax = ay \quad (x, y \in S).$$

ρ_a is an equivalence relation.

(*) Indirizzo: Istituto di Matematica, Università, Via del Capitano 15, 53100 Siena, Italy.

Let \(C(a, x) = \{ y \in S \mid ax = ay \} \) the equivalence class of \(x \). The equivalence \(\varrho_a \) defines a partition \(\pi_a(S) \) of \(S \) where the parts of \(\pi_a(S) \) are the elements of the quotient set \(S/\varrho_a = \{ C(a, x) \mid x \in S \} \).

Theorem 1.2.

(i) \(C(a, x) \subseteq C(sa, x), \forall s \in S. \)

(ii) If \(a \) is a left cancellable element of \(S \), then every class \(C(a, x) \) consists of a single element.

(iii) If \(S \) is left simple, then \(\pi_a(S) = \pi_b(S) \) for all \(a, b \in S \).

(iv) If \(ax = bx \) holds for all \(x \in S \), then \(\pi_a(S) = \pi_b(S) \).

Proof. (i) is evident.

(ii) \(ax = ay \) implies \(x = y \), thus \(C(a, x) = \{ x \}, \forall x \in S. \)

(iii) It holds \(Sa = S \) for all \(a \in S \). Let \(y \in C(a, x) \). Then for any element \(b \) of \(S \) there is an element \(s \in S \) such that \(b = sa \). Hence \(C(a, x) \subseteq C(b, x) \) by (i). The converse inclusion can be obtained similarly, and thus \(C(a, x) = C(b, x) \) for each \(x \in S \), that is \(\pi_a(S) = \pi_b(S) \).

(iv) Let \(y \in C(a, x) \), i.e. \(ay = ax \). But \(ax = bx \) and \(ay = by \), whence \(bx = by \), \(y \in C(b, x) \) and \(C(a, x) \subseteq C(b, x) \). Similarly, \(C(b, x) \subseteq C(a, x) \) and we get \(C(a, x) = C(b, x) \) for all \(x \in S \). Thus Theorem 1.2. is proved.

Remarks. (a) In general, \(\pi_a(S) = \pi_b(S) \) does not imply \(ax = bx \), \(\forall x \in S \).

(b) If \(S \) is a left zero semigroup, then \(ax = ay = a, \forall y \in S \) and thus \(C(a, x) = S, \forall a, x \in S \), that is \(\pi_a(S) \) has a single class (\(\forall a \in S \)).

(c) Let \(a \) be a left magnifying element of \(S \), i.e. \(aM = S \) holds for a proper subset \(M \) of \(S \). Then every class \(C(a, x) \) of \(\pi_a(S) \) contains at least one element of \(M \). Indeed, there is an element \(m \in M \) such that \(ax = am \), whence \(m \in C(a, x) \). Choosing an element \(\bar{m} \), in \(C(a, x_i) \) (\(i \in I \)), then \(\bar{M} = \{ \bar{m}_i; i \in I \} \) is a minimal subset of \(S \) having the property \(a\bar{M} = S \) (cfr. also [2]).

Theorem 1.3. Let \(S \) be a semigroup, \(e \in E(S) \) such that \(Se \) is a minimal left ideal of \(S \). If \(s \) is an element of \(S \) such that \(es = ese \), then \(\pi_s(S) = \pi_{es}(S) \).

Proof. We have to show that \(ess = esy \) (\(x, y \in S \)) implies \(ex = ey \) and conversely. Let \(ess = esy \). Since \(Se \) is a minimal left ideal of \(S \), \(eSe \) is the
maximal subgroup of \(S \) containing \(e \). Denote \((ese)^{-1}\) the inverse of \(ese \) in \(eSe \).
Then \(ex = (ese)^{-1}esse = (ese)^{-1}exy = (ese)^{-1}ese = ey \).
Conversely, let \(ex = ey \). Then \(esx = es(ex) = es(ey) = (ese)y = esy \).

Theorem 1.3. is completely proved.

The converse of Theorem 1.3. holds if \(S \) is right reductive, i.e. \(ax = bx \)
(\(\forall x \in S \)) implies \(a = b \) (\(a, b \in S \)).

Theorem 1.4. Let \(S \) be a right reductive semigroup, \(e \in E(S) \). If \(s \) is
an element of \(S \) such that \(q_e \subseteq q_{es} \), then \(es = ese \).

Proof. By hypothesis, \(ex = ey \) implies \(esx = esy \) (\(x, y \in S \)). Hence for
each \(x \in S \) we have \(ex = e(ex) \), i.e. \((es)x = (es)ex = (ese)x \). Since \(S \) is right
reductive, we get \(es = ese \).

Theorem 1.3. and Theorem 1.4. imply the following

Theorem 1.5. If \(S \) is a right reductive semigroup and \(e \in E(S) \) such
that \(S_e \) is a minimal left ideal of \(S \), then the following conditions are equivalent

(i) \(es = ese \);
(ii) \(\pi_e(S) = \pi_{es}(S) \) (\(s \in S \)).

The next result is known (see [1], theorem 1.17), we prove it for the sake
of completeness.

Theorem 1.6. Let \(K(S) \) be a completely simple minimal ideal of \(S \). If
\(e \in E(K(S)) \), the following are equivalent

(i) \(es \in S e \),
(ii) \(es = ese \),
(iii) \(L e \subseteq L \), where \(L = S e \) is a minimal left ideal,
(iv) \(fs \in S f \) for all \(f \in E(L) = E(K(S)) \cap L \).

Proof. (i) \(\Rightarrow \) (ii). (i) implies that there is an element \(v \in S \) such that
\(esv = ve \). Thus \(ese = (ve)e = ve = es \).

(ii) \(\Rightarrow \) (iii). Since \(es = ese \), we get \(Le = Ses = Serie \subseteq Se = L \).

(iii) \(\Rightarrow \) (iv). If \(f \in E(L) \), then \(L = Sf \) and \(fe \in Le \subseteq L = Sf \).
Finally, (iv) implies (i) evidently.
By Theorem 1.3., any of conditions (i)-(iv) of Theorem 1.6. implies \(\pi_e(S) = \pi_{es}(S) \). If \(S \) is right reductive, then \(C(e, x) \subseteq C(es, x) \), \(\forall x \in S \) implies (i)-(iv) of Theorem 1.6. by Theorem 1.4.

Theorem 1.7. Let \(S \) be a right reductive semigroup containing a completely simple minimal ideal \(K(S) \). If \(e \in E(K(S)) \) and \(s \in S \) the following are equivalent:

(i) \(es \in Se \),
(ii) \(es = ese \),
(iii) \(Ls \subseteq L \), where \(L = Se \) is a minimal left ideal,
(iv) \(fs \in Sf \) for all \(f \in E(L) \),
(v) \(\pi_e(S) = \pi_{es}(S) \).

Proof. By Theorems 1.5. and 1.6.

Theorem 1.8. Let \(K(S) \) be a completely simple minimal ideal of a semigroup \(S \). Let \(e \in E(K(S)) \) and thus \(L = Se \) is a minimal left ideal. Then \(L = K(S) \) implies \(\pi_e(S) = \pi_{es}(S) \), \(\forall s \in S \). Conversely, if \(S \) is right reductive and \(g_e \subseteq g_{es} \), \(\forall s \in S \), then \(L = Se = K(S) \).

Proof. If \(L = K(S) \), then \(L \) is a right ideal and \(Ls \subseteq L \). By Theorems 1.6. and 1.3. we obtain \(\pi_e(S) = \pi_{es}(S) \), \(\forall s \in S \). Conversely, if \(C(e, x) \subseteq C(es, x) \), \(\forall x, s \in S \) and \(S \) is right reductive, then Theorems 1.4. and 1.6. imply \(Ls \subseteq L \), \(\forall s \in S \), that is, \(L (= Se) \) is a right ideal of \(S \). But \(L \) is minimal, and hence it follows that \(L = K(S) \).

2. – The equivalence relation \(g_e \) defined in \(I \) will be a congruence relation under certain conditions.

Suppose that a semigroup \(S \) has an element \(x_0 \) such that \(x_0 S = \overline{S} \subseteq S \), and

(a) \(\overline{S} x_0 = \overline{S} \); (b) \(ss' = ss'' \) implies \(s' = s'' \) for all \(s, s', s'' \in \overline{S} \). Let us consider the classes \(C(x_0, y) \) of the relation \(g_e \). Let us fix an element \(y_i \) (\(i \in I \)) in every class. Then \(\overline{S} = \bigcup \{ C(x_0, y_i) \} \), where \(C(x_0, y_i) \cap C(x_0, y_j) = \phi \) (\(i \neq j \)).

Theorem 2.1. Every class \(C(x_0, y_i) \) contains at most one element of \(\overline{S} \).

Proof. If \(s_1, s_2 \in \overline{S} \) and \(x_0 s_1 = x_0 s_2 \), then \(x_0^2 s_1 = x_0^2 s_2 \), and in view of (b), \(s_1 = s_2 \) follows \((x_0^2 \in \overline{S}) \).

Theorem 2.2. If \(\overline{S} \) is a finite or a right simple semigroup, then every class \(C(x_0, y_i) \) contains exactly one element of \(\overline{S} \).
Proof. If \overline{S} is finite, then $x_0\overline{S} = \overline{S}$. For if s_1, s_2 are different elements of \overline{S}, then $x_0s_1 \neq x_0s_2$ by Theorem 2.1, whence $x_0\overline{S} = \overline{S}$ because of $|\overline{S}| = |x_0\overline{S}|$. Thus every class $C(x_0, y_i)$ contains exactly one element of \overline{S}. If \overline{S} is right simple then $x_0\overline{S} = \overline{S}$. For a class $C(x_0, y_i)$ we have $x_0s_i \in \overline{S}$. Hence $x_0\overline{S} = \overline{S}$ and there is an element $s \in \overline{S}$ such that $x_0s = x_0y_i$, that is $x_0(x_0s) = x_0y_i$, whence $x_0s \in C(x_0, y_i)$. But $x_0s \in \overline{S}$.

Theorem 2.3. $C(x_0, y_i) = C(s, y_i)$ for all $s \in \overline{S}$ $(i \in I)$.

Proof. Let $x_0y_i = s_1 (s_i \in \overline{S})$; $x \in C(x_0, y_i)$ if and only if $x_0x = s_1$. Let $s_2 \in \overline{S}$ for any element x of $C(s_2x_0, y_i)$ it holds $s_2x_0x = s_2s_1$. Hence it follows that $x_0x = s_1$, i.e., $x \in C(x_0, y_i)$. Thus $C(s_2x_0, y_i) = C(x_0, y_i)$, where $s_2 \in \overline{S}$. But $\overline{S} = S$ by condition (a) and $C(s, y_i) = C(x_0, y_i)$.

Evidently, if $y_i \neq y_j$ (that is, $y_j \in C(x_0, y_i)$, $i, j \in I$) then $C(s, y_i) \neq C(s', y_i)$ $(s, s' \in \overline{S})$. For if $C(s, y_i) = C(s', y_j)$ then it follows that $C(x_0, y_i) = C(x_0, y_j)$ which is a contradiction. Thus the classes $C(s, y_i)$, $s \in \overline{S}$ are different when y_i runs over different \overline{S} equivalence classes.

By Theorem 2.3, $C(s, y_i)$ is a function of y_i but it is independent from s, we can write $C(y_i)$ instead of $C(s, y_i)$.

Theorem 2.4. There exists $y_k \in S$ $(k \in I)$ such that $\forall x \in C(y_i)$ and $\forall y \in C(y_j)$ $(i, j \in I)$ it holds $xy \in C(y_k)$.

Proof. We have $x_0x = x_0y_i = s_i \in \overline{S}$ and $y \in C(y_i)$ implies $y \in C(s_i, y_i)$, that is $x_0y = s_iy_i$. In this case $x_0(xy) = s_0y = s_0y_i = x_0(y_0y_i)$, i.e. $xy \in C(x_0, y_0y_i) = C(x_0, y_k) = C(s_i, y_k) = C(y_k) (k \in I)$, that is $y_k \in C(y_k)$.

Corollary 2.5. \overline{S} is a congruence relation on S, i.e. $S/\overline{S} = \{C(y_i)\}_{i \in I}$ is a quotient semigroup \overline{C} with property $C(y_i)C(y_j) = C(y_k)$ $(k \in I)$, where $C(y_k) = C(y_k)$ $(i, j, k \in I)$.

Theorem 2.6. Let C^* be a subset of \overline{C} consisting of classes $C(y_i)$ which have an element of \overline{S}. Then $C^* \cong \overline{S}$.

Proof. By Theorem 2.1, the class $C(y_i)$ $(i \in I)$ has at most one element of \overline{S}. If $s_i \in C(y_i)$ and $s_i \in \overline{S}$, then $C(y_i) = C(s_i)$. The mapping $q: C^* \rightarrow \overline{S}$, $q(C(s_i)) = s_i$ is an isomorphism, because of $C(s_i)C(s_i) = C(s_i, s_i)$ by Theorem 2.5., and C^* is a subsemigroup of \overline{C}.

Theorem 2.7. $C^* = \overline{C}$ if and only if $x_0\overline{S} = \overline{S}$ (i.e. $x_0\overline{S} \subset \overline{S}$ implies $C^* \subset \overline{C}$).
Proof. \(C^* = \overline{C} \) if and only if every class \(C(y_i) \) has an element \(s_i \in \overline{S} \). When \(y_i \) runs over the different classes \(C(y_i) \), \(x_0 y_i \) describes \(x_0 S = \overline{S} \). Thus \(x_0 \overline{S} = x_0 S = \overline{S} \). Hence it follows that \(C^* \subset \overline{C} \) if \(x_0 \overline{S} \subset \overline{S} \). Conversely, if \(x_0 \overline{S} = x_0 S = \overline{S} \), then by Theorem 2.2, \(C^* = \overline{C} \).

Remark. We can obtain analogous theorems if \(S x_0 = \overline{S} \subset S \) and (a') \(x_0 \overline{S} = \overline{S} \), (b') \(s' s = s'' s \Rightarrow s' = s'' \), \(\forall s, s', s'' \in \overline{S} \) hold instead of (a), (b).

3. We shall give necessary and sufficient conditions for the existence of subsemigroups \(\overline{S} \subset S \) satisfying conditions (a) and (b) of 2. We start from the following decomposition[3]

\[
S = \bigcup_{i=0}^{5} S_i, \tag{1}
\]

where

(2)_0 \(S_0 = \{ a \in S; a S \subset S \text{ and } \exists x \in S - \{0\} \text{ so that } ax = 0 \} \),

(2)_1 \(S_1 = \{ a \in S; a S = S \text{ and } \exists y \in S - \{0\} \text{ so that } ay = 0 \} \),

(2)_2 \(S_2 = \{ a \in S - (S_0 \cup S_1); a S \subset S \text{ and } \exists x_1, x_2 \in S \),

so that \(x_1 \neq x_2, \ ax_1 = ax_2 \},

(2)_3 \(S_3 = \{ a \in S - (S_0 \cup S_1); a S = S \text{ and } \exists y_1, y_2 \in S \),

so that \(y_1 \neq y_2, \ ay_1 = ay_2 \},

(2)_4 \(S_4 = \{ a \in S - \bigcup_{i=0}^{3} S_i; a S \subset S \} \),

(2)_5 \(S_5 = \{ a \in S - \bigcup_{i=0}^{3} S_i; a S = S \} \).

The sets \(S_i \) \((i = 0, 1, 2, 3, 4, 5)\) are disjoint subsemigroups of \(S \) and the following relations hold

(3)_1 \(S_5 S_i \subset S_i, S_i S_5 \subset S_i \) \((0 \leq i \leq 5)\),

(3)_2 \(S_4 S_3 \subset S_2, S_4 S_2 \subset S_2, S_4 S_1 \subset S_0 \),

(3)_3 \(S_4 S_0 \subset S_0, S_2 S_3 \subset S_2, S_0 S_1 \subset S_0 \).
We obtain a similar decomposition

\(S = \bigcup_{i=0}^{5} D_i \),

if in (2) \((i = 0, \ldots, 5)\) the multiplication by \(a \) is on the right.

The result of this § 3 is the first step in this field of research.

Any semigroup with at most one \(O \) annihilator has a unique decomposition (1) as well as one of type (4). Let \(x_0 S = \overline{S} \subset S \). Let us consider the decompositions (1) and (4) of \(\overline{S} \)

\(\overline{S} = \bigcup_{i=0}^{5} \overline{S}_i = \bigcup_{i=0}^{5} \overline{D}_i \).

It is easy to see that property (a) holds if and only if \(x_0^2 \in \overline{D}_1 \cup \overline{D}_3 \cup \overline{D}_5 \).

For \(x_0^2 \in \overline{S} \) and \(\overline{S} x_0 = x_0 \overline{S} x_0 \subset x_0 S = \overline{S} \).

On the other hand, if \(x_0^2 \in \overline{D}_1 \cup \overline{D}_3 \cup \overline{D}_5 \), \(\overline{S} = \overline{S} x_0 \subset \overline{S} x_0 \) whence \(\overline{S} x_0 = \overline{S} \) and (a) holds. Conversely, if (a) holds, then \(\overline{S} x_0 = \overline{S} \) and \(x_0^2 \in \overline{D}_1 \cup \overline{D}_3 \cup \overline{D}_5 \).

If \(\overline{S} = \overline{S}_1 \cup \overline{S}_2 \) then \(\overline{S}_1 = \overline{S}_2 \) implies \(\overline{s}_1 = \overline{s}_2 \) for all \(\overline{s} \in \overline{S} \), \(\overline{s}_1, \overline{s}_2 \in \overline{S} \) (property (b)). Conversely, if \(\overline{S} \) has the property (b), then for every element \(\overline{s} \in \overline{S} \) we have \(\overline{s} \in \overline{S}_1 \cup \overline{S}_2 \), that is \(\overline{S} = \overline{S}_1 \cup \overline{S}_2 \). Therefore we obtain the following

Theorem 3.1. The semigroup \(x_0 S = \overline{S} \subset S \) has properties (a), (b) if and only if \(x_0^2 \in D_1 \cup D_3 \cup D_5 \) and \(\overline{S} = \overline{S}_1 \cup \overline{S}_2 \).

Remark. The decomposition (5) of \(\overline{S} \) isn't independent on the decomposition (1) and (4) of \(S \). This problem will be discussed later on.

Bibliography

Sunto

Si studiano (1) certe proprietà generali, in un semigruppo S, della relazione di equivalenza \equiv_a ($a \in S$) definita da $x \equiv_a y \iff ax = ay$ ($x, y \in S$). Se in S esiste un sottosemigruppo proprio \bar{S} con certe proprietà, \equiv_a risulta una congruenza; si studia il semigruppo quoziente S/\equiv_a (2). Infine in 3 si determina una condizione necessaria e sufficiente affinché in S esista un sottosemigruppo \bar{S} con le proprietà richieste, ricorrendo alla decomposizione di Szép di un semigruppo.
