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V. P. MADAN anma C. ROGERS (*)

Correspondence principle for plane strain problems

in magneto - thermoviscoelasticity (**)

1 - Introduection

The use of correspondence principles in linear viscoelasticity is well known.
The elastie-viscoelastic analogy which forms the basis of the correspondence
prineiple, was first introduced by Alfrey[1] in determining stresses produced
by external forces in a viscoelastic body. Lee[5] then extended the same, to
deal with viscoelastic compressible bodies. Later, Hilton [4] generalized Alfrey’s
analogy to thermal stresses and Sternberg [10] introduced it into the theory
of ‘thermal stresses in compressible bodies. The treatment of such problems
in viscoelasticity and thermoviscoelasticity may be found in the works of
Bland {2] and Nowacki[7], respectively.

In the present work, we seek the solution of plane strain problems in
magneto-thermoviscoelasticity by employing a correspondence principle. The
solution of associated problem in magneto-thermoelasticity may be obtained
without recourse to linearization, (as in the works of Paria [8], Madan [6]
and Chandrasekharaih [3]).

2 - Magneto-thermoelastic problem

The governing equations of linear magneto-thermoelasticity comprise:

— A linear elastic stress-strain law involving the temperature distri-
bution

(1.1) Tis = 2055 + (loe — By 1) 045,
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in which 2, #, ave Lamé constants, f, = (34, + 2u,) where o is the coef-
ficient of linear thermal expansion and e;; = 3(u,; -+ %;:), #; (¢=1,2, 3) re-
present the displacement components.

— Maxwell’s electromagnetic equations

oD oB
(1.2) curl H = J + 7 (1.3) cwlE=— T
(1.4) divB =0, (1.5) divD =yp,,
(1.5) D =:E, (1.2) B=uH.

— Ohm’s law

d ou
J= O'[E—*‘(a—l; XB)] +Qe—éz—kovToy

where o, denotes the charge donsity and o the charge conductivity and k,
is a constant.

— Fourier’s law of heat conduction

oTl de .
(1.9) k V2T, +Q = oC, —af—" + Tafa; + 7o div J,

where ) represents the intensity of heat source, k is the thermal conductivity,
0, is the specific heat at constant strain, 7, is a certain reference temperature
over which the perturbed temperature is T, and 7, is the coefficient connecting
the current density with the heat flow density.

— The equations of motion for an electrically conducting elastic solid [7]

azui - 3’Eih

(1.10) e FE = T, + (JxB); + 0. E + F.

— In addition to the stresses 7,; due to the elastic deformation the ap-
plication of the electro-magnetic field also produces stresses in the medium
and the corresponding stress tensor %,; is called the Maxwell electro-magnetic
stress. It is given in terms of the electric and magnetic field by

: 1
(1.11) Ty =& [Ez B, — Fi BB, (31';] + %" I:BiBj 35 BB, (3”:]

(-3
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— The total stress 7, is defined by
(1.12) Ty= 1+ T

Equations (1.1)-(1.10). comprise the basic equations of magneto-thermo-
elasticity. These are solved, using the presecribed initial and boundary con-
ditions.

Neglecting the displacement vector D, and external body force F and as-
suming static situations, the eqs. (1.1), (1.10) for finite conductivity yield

0T;

v
(1.13) 7, + peleurl Hx H]; = 0,
(1.14) VeH, =0,

(1.15) EV2T, +-Q =0.

We consider the case of plane equilibrium with u = (%1, %,5,0), H=(H,, H,, 0)
and 7, == 7,,. The stress function %o May be introduced consistent with (1.15)
with :

.__azxo
(1.16) T = A amz—mﬂlﬂe,

Pyy 1 2 .
(1.17) Tu :‘Eé—ﬁﬂe[ﬂf*ﬂe]y

1 s
(1.18) ‘ Tap = + 5 wlH — HZJ .

The compatibility relation between the plane strain components gives

1 2 o 2
E 4 P - 2 2Y L e
(10 V0t g () 7 4 g (L] +

2po(1 4 v)

Gy VTe=0.

+

It may be shown that the governing equation (1.19) can be solved without
any recourse to the usual linearization (8] viz: H, = H, + hyy Hy=h,. In
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fact with the complex substitution z = & - iy, 7z = o — iy, equation (1.14)
gives

(1.20) H, 4+ iH, = idz +h(z) ,

where h(z) is an arbitrary function of z and A is a real constant, while eq. (1.19)
provides

f

21(3 2 0?
(1.21) Vigo + al,VeT,, B,= _fu",(,l_"i"._ug (Ve ) .

Ao+ 240 02 0%
The eq. (1.21) may be replaced by the simple biharmounic equation
(1.22) V(s — x1) =0,
where y, satisfies
(1.23) Vg, + aliyTy=0.
Hence from (1.22), we obfain
(1.24) %o = 11 + fa(2) + 1a6) + Zfs(e) + 2fal2)

while eqs. (1.16)-(1.18) now provide the components of stress for the magnet()-
thermoelastic problem.

3 - Magneto-thermoviscoelasticity and the correspondence principle

The governing equations of magneto-thermoviscoelasticity differ from
those of the magneto-thermoelasticity egqs. (1.1)-(1.12), in that the con-
stitutive eq. (1.1) must now be replaced by the thermoviscoelastic relation [7]

(1.25) fl(D)Pa(D)rfj = Py(D)Py(D)e;;
+ 0,43 {Pi(D) Py(D) — Py(D)Py(D)} e — Py(D)Py(D)al]  (4,) =1,2,3),

where P,/(D), (i =1, 2,3, 4) are linear differential operators

N dn .
(1.26) Pz(D) — z a]ﬁn)Dn , Dn == dt" (/I, = 1’ 2, 3’ 4) y
n=0
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aﬁ:’”i’ are certain constants. For a perfectly elastic body the operators P,(D)
reduce to the first term of the series (1.26)

© _ 2u(l + »)

(0) o __
=21, a’=1, af T
P

(1.27) a” =1, af

The constitutive relations (1.25) may also be represented in integral form [7]
4 t . .

(1.28) 75, =2 [ a(t—1)é,dr + 85 [ [b(t —1)é — {3b(t — 7) + 2a(t — 1)} T d7 .
o o

It is assumed that the viscoelastic body is free of stresses at the initial in-
stant; a(?) and b(t) are some functions of time which for perfectly elastic body
reduce to the Lamé constants 4 and 2. The dot in the integrand denotes dif-
ferentiation with respect to 7, while ¢ = e¢,,.

For identical magneto-thermoviscoelastic problem eqs. (1.2)-(1.12) together
with the boundary and initial conditions remain unchanged. Taking the Laplace
transform of egs. (1.1), (1.25) or (1.28) we obtain

(1.29) %, = 2uo8;; + (A8 — B, T)5,;  (elastic)

and

(1.30) %, =2a(p)e,; + (Ap)e + f(p)T) 5., (viscoelastic)

where

_ Py(p) = Py(p) Py(p) — Py(p) Ps(p)
X KA L Y X VX
and  B(p) = (81 +2@)a or i(p) = pa(p), Ap) = pb(p), while
(1.32) Bw) = (31 + 2@)a

depending on which of the two forms (1.25) or (1.28) are considered for Laplace
transform.
Also the Laplace transform of the magneto-thermoelastic relation (1.21)

provides
(1.33) Vige + aB, V2T, =0 .

Due to magneto-thermoelastic and the magneto-thermoviscoelastic analogy
shown above, the stress function % for corresponding plane strain problem
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for viscoelastic body may be derived from
(1.34) Vg + aBy(p)VeT, = 0.

A comparison of eqs. (1.33) and (1.34) under similar boundary and initial
conditions shows that 7 = pf(p)7°, f(p) = E(p)/pE,, whence it follows that

! 0
(1.35) 1@y @y 1) = [ f(t—7) ot ,/0(7/17"”y"7)(17
N . Y .

If the temperature field in viscoelastic body is stationary the differential equa-
tion for ¥ assumes the form '

VET, =0

' _ E
(1.36) Vij 4o —"]()l)

A comparison of .eqs. (1.36) and (1.21) yields the relation

(1.37) =10 %-
Hence y = f(2) %o(#1, @;). In absence of external heat sources (¢ = 0), eq. (1.15)

implies V 7o = 0. Therefore y = y,, and eqs. (1.16), (1.18) now provide stress
components for both the systems.
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Abstract

It is shown the solution to certain steady plane strain  problem in magneto-
thermoviscoelasticity may be obtained with the aid of a correspondence principle, using the
solution of the associated magnetothermoelastic problem. ILinear differential as well as
integral operator forms of the constitutive relations are used to represent the thermovisco-
elastic behaviour; while the physical properties of the material such as thermal coefficient o
and the permeability u, efc. are assumed independent of time.






