V. P. MADAN and C. ROGERS (*)

Correspondence principle for plane strain problems in magneto-thermoviscoelasticity (**)

1 - Introduction

The use of correspondence principles in linear viscoelasticity is well known. The elastic-viscoelastic analogy which forms the basis of the correspondence principle, was first introduced by Alfrey [1] in determining stresses produced by external forces in a viscoelastic body. Lee [5] then extended the same, to deal with viscoelastic compressible bodies. Later, Hilton [4] generalized Alfrey's analogy to thermal stresses and Sternberg [10] introduced it into the theory of thermal stresses in compressible bodies. The treatment of such problems in viscoelasticity and thermoviscoelasticity may be found in the works of Bland [2] and Nowacki [7], respectively.

In the present work, we seek the solution of plane strain problems in magneto-thermoviscoelasticity by employing a correspondence principle. The solution of associated problem in magneto-thermoelasticity may be obtained without recourse to linearization, (as in the works of Paria [8], Madan [6] and Chandrasekharaih [3]).

2 - Magneto-thermoelastic problem

The governing equations of linear magneto-thermoelasticity comprise:

— A linear elastic stress-strain law involving the temperature distribution

(1.1)
$$\tau_{ij} = 2\mu_0 e_{ij} + (\lambda_0 e - \beta_0 T) \delta_{ij},$$

^(*) Indirizzi: V. P. Madan, Dept. of Math. Red Deer, College, Red Deer, Alberta, Canada. C. Rogers, Dept. of Applied Math., University of Waterloo, Waterloo, Ont., Canada.

^(**) Ricevuto: 30-I-1978.

in which λ_0 , μ_0 are Lamé constants, $\beta_0 = (3\lambda_0 + 2\mu_0)\alpha$ where α is the coefficient of linear thermal expansion and $e_{ij} = \frac{1}{2}(u_{i,j} + u_{i,j})$, u_i (i = 1, 2, 3) represent the displacement components.

- Maxwell's electromagnetic equations

(1.2)
$$\operatorname{curl} \boldsymbol{H} = \boldsymbol{J} + \frac{\partial \boldsymbol{D}}{\partial t},$$
 (1.3) $\operatorname{curl} \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t},$

(1.4)
$$\operatorname{div} \mathbf{B} = 0 , \qquad (1.5) \qquad \operatorname{div} \mathbf{D} = \varrho_{\epsilon} ,$$

$$(1.5) D = \varepsilon E, (1.2) B = \mu_{\varepsilon} H.$$

- Ohm's law

$$m{J} = \sigma \left[m{E} + \left(rac{\partial m{u}}{\partial t} imes m{B}
ight)
ight] + arrho_e rac{\partial m{u}}{\partial t} - k_0 \, m{
abla} \, T_0 \, ,$$

where ϱ_o denotes the charge donsity and σ the charge conductivity and k_0 is a constant.

— Fourier's law of heat conduction

(1.9)
$$k \nabla^2 T_0 + Q = \varrho C_v \frac{\partial T_0}{\partial t} + T_1 \beta_0 \frac{\partial e}{\partial t} + \pi_0 \operatorname{div} \boldsymbol{J},$$

where Q represents the intensity of heat source, k is the thermal conductivity, C_* is the specific heat at constant strain, T_1 is a certain reference temperature over which the perturbed temperature is T_0 and π_0 is the coefficient connecting the current density with the heat flow density.

— The equations of motion for an electrically conducting elastic solid [7]

(1.10)
$$\varrho \frac{\partial^2 u_i}{\partial t^2} = \frac{\partial \tau_{ik}}{\partial x_k} + (\mathbf{J} \times \mathbf{B})_i + \varrho_e \mathbf{E} + \mathbf{F}.$$

— In addition to the stresses τ_{ij} due to the elastic deformation the application of the electro-magnetic field also produces stresses in the medium and the corresponding stress tensor $\bar{\tau}_{ij}$ is called the Maxwell electro-magnetic stress. It is given in terms of the electric and magnetic field by

— The total stress T_{ij} is defined by

$$(1.12) T_{ij} = \tau_{ij} + \bar{\tau}_{ij} .$$

Equations (1.1)-(1.10) comprise the basic equations of magneto-thermoelasticity. These are solved, using the prescribed initial and boundary conditions.

Neglecting the displacement vector D, and external body force F and assuming static situations, the eqs. (1.1), (1.10) for finite conductivity yield

(1.13)
$$\frac{\partial \tau_{ik}}{\partial x_k} + \mu_e [\operatorname{curl} \mathbf{H} \times \mathbf{H}]_i = 0,$$

$$\nabla^2 H_i = 0 \,,$$

$$(1.15) k\nabla^2 T_0 + Q = 0.$$

We consider the case of plane equilibrium with $u = (u_1, u_2, 0)$, $H = (H_1, H_2, 0)$ and $\tau_{12} = \tau_{21}$. The stress function χ_0 may be introduced consistent with (1.15) with

(1.16)
$$\tau_{12} = \frac{-\partial^2 \chi_0}{\partial x_1 \partial x_2} - \mu_e H_1 H_2,$$

(1.17)
$$\tau_{11} = \frac{\partial^2 \chi_0}{\partial x_2^2} - \frac{1}{2} \mu_e [H_1^2 - H_2^2] ,$$

(1.18)
$$\tau_{22} = \frac{\partial^2 \chi_0}{\partial x_1^2} + \frac{1}{2} \mu_e [H_1^2 - H_2^2].$$

The compatibility relation between the plane strain components gives

$$\begin{split} (1.19) \quad \nabla^4 \chi_0 + \frac{1}{2(1-\nu)} \, \mu_e \left[\left(\frac{\partial^2}{\partial x_1^2} - \frac{\partial^2}{\partial x_2^2} \right) (H_1^2 - H_2^2) + 4 \, \frac{\partial^2}{\partial x_1 \, \partial x_2} (H_1 H_2) \right] + \\ + \frac{2\mu \alpha (1+\nu)}{(1-\nu)} \, \nabla^2 T_0 = 0 \; . \end{split}$$

It may be shown that the governing equation (1.19) can be solved without any recourse to the usual linearization [8] viz: $H_1 = H_0 + h_x$, $H_2 = h_y$. In

fact with the complex substitution $z=x+iy, \ \bar{z}=x-iy,$ equation (1.14) gives

$$(1.20) H_1 + iH_2 = iAz + \overline{h(z)} ,$$

where h(z) is an arbitrary function of z and A is a real constant, while eq. (1.19) provides

$$(1.21) \qquad
abla^4 \chi_0 + lpha E_0
abla^2 T_0 \;, \qquad E_0 = rac{2\mu_0 (3\lambda_0 \, + \, 2\mu_0)}{\lambda_0 \, + \, 2\mu_0} \left(
abla^2 \equiv rac{\partial^2}{\partial z \, \partial \overline{z}}
ight) .$$

The eq. (1.21) may be replaced by the simple biharmonic equation

$$\nabla^4(\chi_0 - \chi_1) = 0 \; ,$$

where χ_1 satisfies

$$\nabla^2 \chi_1 + \alpha E_0 T_0 = 0.$$

Hence from (1.22), we obtain

(1.24)
$$\chi_0 = \chi_1 + f_2(z) + \overline{f_2(z)} + \overline{z} f_3(z) + z \overline{f_3(z)},$$

while eqs. (1.16)-(1.18) now provide the components of stress for the magnetothermoelastic problem.

3 - Magneto-thermoviscoelasticity and the correspondence principle

The governing equations of magneto-thermoviscoelasticity differ from those of the magneto-thermoelasticity eqs. (1.1)-(1.12), in that the constitutive eq. (1.1) must now be replaced by the thermoviscoelastic relation [7]

$$\begin{split} (1.25) \quad P_1(D)P_3(D)\tau_{ij} &= P_2(D)P_3(D)e_{ij} \\ \\ &+ \delta_{ij} \big[\tfrac{1}{3} \big\{ P_1(D)P_4(D) - P_2(D)P_3(D) \big\} e - P_1(D)P_4(D)\alpha T \big] \quad (i,j=1,2,3) \; , \end{split}$$

where $P_i(D)$, (i = 1, 2, 3, 4) are linear differential operators

(1.26)
$$P_i(D) = \sum_{n=0}^{N_i} a_i^{(n)} D^n, \quad D^n \equiv \frac{\mathrm{d}^n}{\mathrm{d}t^n} \qquad (i = 1, 2, 3, 4),$$

 $a_i^{(N_i)}$ are certain constants. For a perfectly elastic body the operators $P_i(D)$ reduce to the first term of the series (1.26)

(1.27)
$$a_1^{(0)} = 1$$
, $a_2^{(0)} = 2\mu$, $a_3^{(0)} = 1$, $a_4^{(0)} = \frac{2\mu(1+\nu)}{1-2\nu}$.

The constitutive relations (1.25) may also be represented in integral form [7]

$$(1.28) \ \tau_{ij} = 2 \int_0^t a(t-\tau) \dot{e}_{ij} \, \mathrm{d}\tau + \delta_{ij} \int_0^t [b(t-\tau) \dot{e} - \{3b(t-\tau) + 2a(t-\tau)\} \alpha \dot{T}] \, \mathrm{d}\tau \ .$$

It is assumed that the viscoelastic body is free of stresses at the initial instant; a(t) and b(t) are some functions of time which for perfectly elastic body reduce to the Lamé constants μ and λ . The dot in the integrand denotes differentiation with respect to τ , while $e=e_{it}$.

For identical magneto-thermoviscoelastic problem eqs. (1.2)-(1.12) together with the boundary and initial conditions remain unchanged. Taking the Laplace transform of eqs. (1.1), (1.25) or (1.28) we obtain

$$(1.29) \bar{\tau}_{ij} = 2\mu_0 \bar{e}_{ij} + (\lambda_0 \bar{e} - \beta_0 \bar{T}) \delta_{ij} (elastic)$$

and

(1.30)
$$\bar{\tau}_{ij} = 2\bar{\mu}(p)\bar{e}_{ij} + (\bar{\lambda}(p)\bar{e} + \bar{\beta}(p)\bar{T})\delta_{ij}$$
 (viscoelastic),

where

$$(1.31) \qquad \quad \bar{\mu}(p) = \frac{P_2(p)}{2P_1(p)} \,, \qquad \bar{\lambda}(p) = \frac{P_1(p)P_4(p) - P_2(p)P_3(p)}{3P_1(p)P_3(p)}$$

and
$$\bar{\beta}(p) = (3\bar{\lambda} + 2\bar{\mu})\alpha$$
 or $\bar{\mu}(p) = p\bar{a}(p), \ \bar{\lambda}(p) = p\bar{b}(p),$ while

depending on which of the two forms (1.25) or (1.28) are considered for Laplace transform.

Also the Laplace transform of the magneto-thermoelastic relation (1.21) provides

$$\nabla^4 \bar{\chi_0} + \alpha E_0 \nabla^2 \bar{T}_0 = 0 \; .$$

Due to magneto-thermoelastic and the magneto-thermoviscoelastic analogy shown above, the stress function χ for corresponding plane strain problem

for viscoelastic body may be derived from

$$\nabla^4 \bar{\chi} + \alpha \bar{E}_0(p) \nabla^2 \bar{T}_0 = 0.$$

A comparison of eqs. (1.33) and (1.34) under similar boundary and initial conditions shows that $\bar{z} = p\bar{f}(p)\bar{z}^0$, $\bar{f}(p) = \bar{E}(p)/pE_0$, whence it follows that

(1.35)
$$\chi(x_1, x_2, t) = \int_0^t f(t - \tau) \frac{\partial}{\partial \tau'} \chi_0(x_1, x_2, \tau') d\tau'.$$

If the temperature field in viscoelastic body is stationary the differential equation for \bar{z} assumes the form

(1.36)
$$\nabla^4 \bar{\chi} + \alpha \, \frac{\bar{E}_0(p)}{p} \, \nabla^2 \, T_0 = 0 \; .$$

A comparison of eqs. (1.36) and (1.21) yields the relation

$$\bar{\chi} = \bar{f}(p) \chi_0.$$

Hence $\chi = f(t) \chi_0(x_1, x_2)$. In absence of external heat sources (Q = 0), eq. (1.15) implies $\nabla^2 \tau_0 = 0$. Therefore $\chi = \chi_0$, and eqs. (1.16), (1.18) now provide stress components for both the systems.

References

- T. Alfrey, Non-homogeneous stresses in viscoelastic media, Quart. Appl. Math. 2 (1944), 113-119.
- [2] D. R. Bland, The theory of linear viscoelasticity, Pergamon Press, Oxford 1960.
- [3] D. S. CHANDRASEKHARAIAH, The propagation of magneto-thermoviscoelastic plane waves in a parallel union of the Kelvin and Maxwell bodies, Proc. Camb. Phil. Soc. 70 (1970), 343-350.
- [4] H. H. Hilton, An extension of Alfrey's elastic-viscoelastic analogy to viscoelastic thermal stress problems, Rep. No. TSVE-TR-2, Dep. Aero. Eng., University of Illinois 1953.
- [5] E. H. Lee, Stress analysis in viscoelastic bodies, Quart. Appl. Math. 13 (1955), 183-190.
- [6] V. P. Madan, The propagation of plane waves in a magneto-viscoelastic medium, Tensor 21 (1970), 204-206.

- [7] W. Nowacki, *Thermoelasticity*, Addison-Wesley Publishing Company Inc., London 1962.
- [8] G. Paria, Magneto-elasticity and magneto thermal elasticity, Advances in Applied Mechanics, Academic Press, New York 10 (1967), 73-110.
- [9] R. V. Southwell, An introduced to the theory of elasticity, Oxford Univ. Press 1941.
- [10] E. Sternberg, On transient thermal stresses in linear viscoelasticity, Proc. Third U.S. Nat. Congr. Appl. Mech., New York 1958.

Abstract

It is shown the solution to certain steady plane strain problem in magneto-thermoviscoelasticity may be obtained with the aid of a correspondence principle, using the solution of the associated magnetothermoelastic problem. Linear differential as well as integral operator forms of the constitutive relations are used to represent the thermoviscoelastic behaviour; while the physical properties of the material such as thermal coefficient α and the permeability μ_e etc. are assumed independent of time.

* * *

