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MArRcO MoDUGNO (%)

On the structure of classical kinematics ()
Frames of reference - Observed kinematics

Frames of reference

Here we study the absolute kinematics of a continuum, which, viewed as
a frame of reference, determines positions, the splitting of event space into
space-time and the consequent splitting of velocity space. We analyse the
positions space and its structures as the time-depending metrie, the time-
depending affine connection and the Coriolis map. Finally we make a clas-
sification of frames.

1 - Frames and the representation of E

L1 - Frames. positions and adapted charts. The basic elements of observed
kinematics are frames, constituted by a reference continuum, whose particles
determine positions on E.

For semplicity of notations, we consider only global frames, leaving to the
reader the obvious generalization to local frames.

Definition. A frame is a couple ,@E{P, {T,,}qe,,} where P is a set
and, Yge P, T, is a world line, such that

(a) E= T, is the disjoint union of {T.} er;
aeP

(*) Indirizzo: Via G. Prati 20, 50124 Firenze, Italy.

(¥*) Lavoroe eseguito nell’ambito del G.N.F.M. (C.N.R.). — Ricevuto: 23-X-197s.
La prima parte di questo lavoro dal sottotitolo Absolute kinematics figura nel volume
(4) 5 (1979) di questa Rivista.
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(b) Veec E, there exists a neighbourhood U of ¢ and a C* chart
@ = {a% a'}: U -~ RxR® adapted to the family of submanifolds {T,},p-

P is the position space; each g € P is a position; p: E — P, ¢ — the unique
g € P, such that ee T,, is the position map.
Henceforth we assume a frame £ to be given.

1.2 - Calculations develop in an easier way if performed with respect to
a chart adapted to #. For simplicity of notations, we consider only global
charts, leaving to the reader the obvious generalization to local charts.

Definition. A chart adapted to P is a special chart {a°, 2'}: E — RXR?,
such that {o}: E — R?® factorizes through p: E — P, by {z}: P — R

Charts adapted to & exist by Definition 1.
Hencefort we assume a chart x adapted to & to be given.

1.3 - Representation of the position space P. P results naturally into a %
manifold.

Proposition. There is a unique C* structure on P, such that the map
p: E— P is O~ Namely it is induced by the charts adapted to {T.} cp-

1.4 - One gets a first immediate representation of P.
The frame & determines a partition of E into the equivalence classes {T,} cp-
Then we get the natural identification of P with the quotient space E/Z

given by [¢] = q=[¢'] <> p(e) = q = p(¢').

1.5 - Choicing a time 7e T and taking, for each equivalence class, its
representative, at the time 7, one gets a second interesting representation of P.
For this purpose, let us introduce three maps related with 2, Vv, 7' e T,

P.: P8, ¢ +— the unique ¢ S; N T;
Pr=ps,: St —~ P ]3(,,,1) = Pop:: 8: =S, .

1.6 - Then we see that P is diffeomorphic (not ecanonically) to a 3-dimen-
sional affine space, by means of P.: P—>S8:, p:: S — P. Moreover one has

P(t",r')o‘l)(r'ﬂ) = Py Pren = ids,

hence P is a O= diffeomorphism.
) T

(', 7
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L7 - Frame motion. We need a further map given by the motions asso-
ciated to the world lines of #.

Definition. The motion of 2 is the map P: Tx P —E, (1, q) — the
unique ¢ € S;: N T, or the map P = Po(id; xp): TXE — E, (z, ¢) = P(z, p(e)).

Thus P is the union of the family of maps {P:},., previously introduced ;
on the other hand, P is the union of the family of maps {P.}p, constituted
by the motions associated with the world-lines of . The motion P (or P
equivalently) characterizes the frame 2.

1.8 - The following immediate formulas will be used in calculations.

Proposition.

t(P(r,0) =7, P(l{e),e)=¢, P(r,P(c,6))=P(r,e), aPoP=2ad, xioP =u'.

L9 - Rappresentation of E. The frame # determines the splitting of the
event space into space-time.

Theorem The maps (t,p): E—+TxP and P: TxP — E are inverse ¢
diffeomorphisms.

Hence (E, p, P) results into a 0 bundle, with fiber T.

Thus we have two bundle structures on E, namely:
n = (E, {, T), which has an absolute basis T and a non canonical fiber diffeo-
morfic to P or to S;, Vre T;
n = (E, p, P), which has a frame depending basis P, diffeomorfic to S, Yz e T,
and an absolute fiber 7.

The frame bundle = characterizes the frame 2.

1.10 - Physical description. A frame 2 is a set P of particles, never meeting,
filling, at each time 7 e T, the whole space S;, with a 0~ flow. Hence first a
frame is a continnum and we study the absolute kinematics of its particles.

Such a continuum can be viewed as a frame of reference. In fact it deter-
mines a partition of E in positions. Bach position is the set of all events
touched by the same frame particle. Under this aspect we can identify the
set of positions with the set of particles P.

2 - Frames and the representation of TE

In this section we are dealing with the first order derivatives of the frame
and tangent spaces.

10
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2.1 - Frame velocity and jacobians. The velocity of the frame is the vector
field on E constituted by the velocities of the world-lines of the frame. Hence
it is the first derivative of the notion with respect to time. On the orther hand,
the jacobians are the first derivatives with respect to event. We consider
only free entities, for simplicity of notations, leaving to the reader to write

them in the complete form.

Definition. The velocity is D,P: TXE —E or P = D,Poj: E -
The Jacobian is D.P: TXE —~E*QE or P=D,Poj: E>E*xE.

v

- E.

The spatial Jacobian is P =D,P: TXxE +>8*QE or P, = DP

Sr — Sq‘ @ S
We will write u, = P(e)(n), Ve e T, E.

2.2 - We get immediate important properties of these maps.

Proposition. One has gole’ =1, gngf’ =0,
Hence we can write

DlpiTXE—‘>U, sz): TXE%EV@’??

P:E—~U, P.E->5®S, P:E—-E*®S.

Moreover, all the previous maps are expressible by P, P and P

=PoP; P=ilg—tQ®P.
We have also the group properties

(P eyoPo)oPum=Pug y  Pan=1ds,

hence 1)(,,’,) preserves the orientation of S, i.e. det j’(r.’,) > 0. One has P=0dx,.

P =Do® da;.

Proof. It follows by derivation of formulas (II.1.8).

2.3 - Representation of TP. In order to get the space TP handy, it is

useful to regard it as a quotient TE,z.

Proposition. Let ve TP. Then C,=Tp(v)= (T P)(T) > TE is a
C> submanifold. Then we get a partition TE = JC,, and a quotient space

vETP



[a] ON THE STRUCTURE OF CLASSICAL KINEMATICS 139

TE which has a natural C® structure and whose equivalence classes are
|21
characterized by

e, ] = [¢', w'] <= {pl(e) = p(e"), P(tle"), e) () = '} .

We get a natural ¢« diffeomorphism between 7P and l’E/g,
We will often make the identification TP = 1’E

2.4 - Choicing a time 7e T and taking, for each equivalence class, its
representative at the time 7, we get a second interesting representation of TP,

given by the inverse (> diffeomorphism 7P:: TP — TS., Tp.: TS: - TP.

2.5 - Taking into account the identification 7P ~ TE,Q, one has the
following expression of 7'p and TP

Tp(e, w) = [¢, P(e)(w)]
TP(z, 2; [e, w]) = (P(z, ), AP(P(z, ¢) + j’(r, e)(w)) .

2.6 - Frame vertical and horizontal spaces. The bundle IT = (E, p, P) induces
two useful spaces.

Definition. The frame vertical tangent spaces is i’gE = Ker Tp — TE.
The frame horizontal tangent space, or frame phase space is &’WE = TE/ f’g,E

2.7 - Represeniation of TE.

Theorem. The maps TE = ExEl’E given by the natural projections.
TE @FZ E — TE, given by the natural inclusions, and

T, p): TE-TTxTP, TP: TTXxTP —+TE

are O diffeomorphisms and T(t, p) is the inverse of TP.
Moreover one has the € diffeomorphisms

i,g E>TxTP—-TE and TE - TTxP - Tgx E.

Relation among the previous three representations of 7E can be found

in a natural way.
The maps TE — TE — T x TP — T,E are given by (e, u) — > (6, Ple)(u))

> (t(e), [e, Ple)(w)]) + [e, u].
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The maps TE - T,E — TTXP — TE are given by (e, u) — (e, wP(e))
— (t(e), u®, [€]) > (e, u®). ;

The choice of the most convenient representation depends on circumstances;
we will generally use the identifications TP =~ TEI% and TxTP ~T,E.

Let us remark that in the decomposition of the vector x € E

@ = 29 P(e) + 2 p(e)

the component z° is absolute, but the space Tg,E is frame depending, and the
space TE is absolute, but the component 259,, is frame depending.

2.8 - Frame metric junction. Wet get a «time depending» Riemannian
structure on P, induced by the family of diffeomorphisms TP — T'S:.

Definition. The frame time depending metric function is the function
gr: TXx TP — R given by the composition

TxTP->TEZR,  gu(z, [6 u]) = 3(P(z, e)(w)2

One has g, = §g,0 2.

3 - Frames and the representation of 7:E

In this section we are dealing with the second order derivatives of the frame
and tangent spaces.

3.1 - Frame acceleration, second jacobians, strain and spin. The acceleration
of the frame is the vector field on E constituted by the acceleration of the
world-lines of the frame. Hence it is the second derivative of the motion with
respect to time. On the other hand, the second and mixed jacobians are the
second derivatives with respect to event-event and time-event. We consider
only free entities, for simplicity of notations, leaving to the reader to write
them in the complete form.

Definition. The acceleration is D2P: TXE —E, ov P = D*Poj: E~E.

The second Jacobian is D:P: TXE —-E<*QE*®E, or ISED"Poj:
E->E*QE*®QE.

. The spatial. second Jacobian is P=D:P: TxE >5@®5®5§ or f’(,..,,
= DBy S SRS @S, | |



[7] ON THE STRUCTURE OF CLASSICAL KINEMATICS 141

The miwed second Jacobian is D, D,P: TXE ~E*QE or P = D, D, Poi:

The mized spatial second Jacobion is ﬁ = I?lePoj: E->S*®E.
The strain is ey = SoP: E >S® 8.

The spin is w,= A/20VP: E->85*®8.

The angular velocity is Qp=% A/20P: E —§.

3.2 - We get immediate important properties of these maps.

Proposition. 0=1oD!P = toD:P =toD,D, P, hence we can write

D;P: TxE-+S, D:P:TXE-—>E*QE*xS, D,D,P: TxE -~E*®S,

ﬁ:E'—)S’ l’;:E'—)E*®E$®S} ﬁ:E—>E*®S’
P.E -5+ ®S.
Moreover all the previous maps are expressible by P, P, DP and P

o=

fﬂ:-?@g@g— (DPoP)®t — 1 (DPoP),

=

(D} Py, = Py yoPss, (D, P)oj = DP .

It u=uP(6) + ugy(e) € E —E, then DP(u) = w0 P+ Ley(tiy) - QpXity. One
has &5 = Lzg. One has

P =T oz, P =T*Dr® dx,,

P =—I%De*® Dad— I (Dai @ Da® + Dod® D)@ da
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ep = L 01+ L 05) D2, ® Di = S D' R Doy wgp= }Z(Fj’oi—]’i’o,-)l)au‘(g) D,
Q=3 Vdet (g7 er T o by .

Proof. It follows by derivation of formulas (IL.1.8).

3.3 - Representation of T*P and »T*P. In order to get the space 1P handy,
it is useful to regard it as a quotient TZEM,.

Proposition. Let ve I*P. Then C,= TI*p~'(v) = (T*P)(T) -~ T*E is
a 0= submanifold.
Then we get a partition T2E = |JC,, and a quotient space 1K, which
TP
has a natural (= structure and whose equivalence classes are characterized by
[e, 1, v, w0) = [&/, w', V', w'] <> {p(c) = p(¢), j’(t(e’), e)(u) =/,

P(ue"), ¢)(v) = v', P(te"), €)(u, >+P(( ), €)(w) = w'} .
We get a natural (= diffeomorphism between T:P and TﬁE,g..

3.4 - Choicing a time re 7 and taking, for each equivalence class, its
representative at the time 7, we get a second interesting representation of
T:P, given by inverse (> diffeomorphisms

7P 1°P —12S:,  Tpe: T2S: - 1P

3.5 - The previous representations of 7P reduce to analogous represen-
tation of »71P.

3.6 - Taking into account the identification 7P g‘i’ﬁE,g,, we get the
following expression of 1*p:

TE])((}, Uy Uy W) = [07 P( yu ) P(G)(’U), (6)(“9 +P( )(w)] .

3.7 - Frame connection and Coriolis map. For each v e T, we can view P
as an affine space, depending on 7, taking into account the isomorphism
Tx TP —>TE. Hence we get a «time depending» affine connection on P.

Theorem. There is a unique map I’g, T x sT*P — v12P, such that T*pol’
= fyo(t, T2p): TE — oT*P, namely

f’g = T*pol’o(T2P) 005 OT j”p(t(e), Le, 4, w, w]) = [, u, 0, w].
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3.8 - Then we can introduce the following map, that will be used (IIIL,1)
to define the covariant derivative of maps T —> TP, hence the acceleration
of observed motions.

Definition. The frame time depending affine connection is

.

Lp: T sT2P —-9T2P.

3.9 - The time depending affine connection Tg does not sufficies for kine-
matics. Coriolis theorem (III,1) requires a further map, which is obtained

|
taking into account the isomorphism 7' x TP — TE.

1
Theorem. There is a uwique map Ip: TxsT*P —yT:P such that

1 i
T*pol’= I'go(t, I*p): TE —»T2P namely

c ! | . =
Lp =T pol's (I°P),,q or I's(tle), [e, u, u,w]) = [e, u, 0,w + 2P(c) -+ P(e)].
! v v v
Thus one has I'p=TIgp+ Cp+ Dy, where Cu: TXTP TP and
Dy: TP TP are given by Oy, 6, w]) = [P(z, e), 2ﬁ(P(1, e))(w)] and
Dy(z, ¢) = [P(Ty e), P(P(z, e))].

3.10 - Then we can give the following definition.

|
Definition. The inertial connection is I',: TxsT2P —pT:P.

The frame Coriolis map is Cyh: Tx TP — TP.
The frame dragging map is Dg: TX P — TP,

4 - Special frames

A classification of the most important types of frames can be performed
taking into account the vanishing of quantities occurring, in DP. So we get
a chain of four types, characterized by a more and more rich structure of the
position space P.
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4.1 - Affine frames.

Definition. The frame & is affine if D2P =o.

4.2 - We have interesting characterizations of affine frames.

Proposition. The following conditions are equivalent.

(a) ¢ is affine. (b) DP depends only on time. (c¢) I’ == (. (d) P depends

only on time. (e) If #(e) = t(¢'), then P.(7) = P(v) + P ' —e). (f) It
t(e) = t(e'), then P(¢') = P(e) + Fex(r)(¢' — €) + Qg(7) X (¢ — 6).

Hence the motion of an affine frame £ is characterized by the motion of
one of its particles P,: T—E and by ¢,: T—S5*® 8§, 2: T —>S.

4.3 - Let & be affine. Since P depends only on time, we can get a reduction
of the representation of TP by TE,;, writing

(Ex8)g = (PXTxS)p=Px(Tx8),.
Theorem. (a) Let P= (TXS)M,, be the quotient space given by
[z, u] = [v/, w'] < w' = Pp (u) .
Then P results into a vector space, putting
A, u] = [7, ], [z, w] 4 [z, w']==[7, %+ 15(,’,.) (w)] .

For each ve T, the map P —S, [v/, u] > P, (w), is an isomorphism.

(b) Let op: PxP — P, be the map, given by (g, [1, w]) — p(P(7, @) + ).
Then the triple (P, P, 6,) is a three dimensional affine space.

(¢) For each ve T, the maps p,: S, —~ P and P.: P->S, are affine iso-
morphisms.

(d) j’_@ resulls to be time independent and it is the affine connection of P
Ty sT2P—>vT:P, (g, [v,], [7,%], [t,w]) = (g, [7, ul, 0, [z, ]) .
4.4 - Rigid frames.

Definition. The frame & is rigid if it is affine and ez = 0.
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4.5 - We have interesting characterizations of rigid frames.

Proposition. The following conditions are equivalent.

(a) &£ is rigid.
(b) If t(e) = t(e"), then [P, () — P y(e)] = e — ¢].
(e) If 1(e) = t(¢'), then P(¢') = P(e) + 2 ,(0) X (¢'— e).

(d) P——O and P: Tx E — SU(S).

Hence the motion of a rigid frame & is characterized by the motion of
one of its particles P,: T —E and by Q,: T —S.

4.6 - Let & be rigid.

Theorem. P results into an affine euclidean space. In fact g, results lo
be time independent and we can define the map gz: P— R, [v,u] - Lu2

The affine connection j’g, results into the Riemanwian connection of 2.

4.7 - Translating frames.

Definition. A frame & is franslating if it is rigid and 2, = 0.

4.8 - We have interesting characterizations of translating frames.

Proposition. The following conditions are equivalent.

(a) & is translating.
(b) If t(e) = t(e'), then Pg 7) = P,(t) + (¢/— o).
(e) If t(e) = t(¢'), then P(e') = P(e).

Hence the motion of a translating frame is characterized by the motion
of one of its particles P,: T — E.

4.9 - Let & be translating. Since P = idz, we can get a further reduction
of the representation of TP by TE,, writing (ExS)g =~ (Px TxS)»
= PxS. ,

Theorem. Let & be transiating.

(a) The map P S, [t, ul—w is well defined and it is an isomorfism. Then
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the map o4 PxS P, (q,u) —p(P(z, q) + u), does not depend on the choice
of teT.
(b) The triple (P, S, 0,) is an affine euclidean space.

4.10 - Inertial frames.

Definition. A frame £ is inertial if it is translating and P =0.

4.11 - Proposition. The following conditions are equivalent.

(a) & is inertial,

(b) # is translating and DP = 0,

(¢) P(z,e)= e P(r—1t(e), with Pe U,
(d) P: E->U is a constant map.

Hence an inertial frame is characterized by its constant velocity.

~

i i
4.12 - Proposition. [ results time independent and Iy = ;.

Observed Kinematies

Here we analyse the one-body kinematics in terms of the positions deter-
mined by a frame, introducing the observed motion and its velocity and
acceleration. By comparison between the absolute and the observed motion
we get the «absolute» velocity addition and Coriolis theorem. TFinally we
make the comparison between the observed motions relative to two frames,
getting the velocity addition and Coriolis theorem.

1 ~ Observed kinematics

Let & a fixed frame and let M be a fixed motion. We analyse M as
viewed by Z.

1.1 - We first introduce useful notations. Let f: T - P be a O~ map.

(3) We put [ = (idg,f): T—TxP, df = (idy,df): T— TxTP,
d*f = (idp, @*f): T — T x T2P.

(b) df and d*f being functions on T, we can choose a natural representative
of the equivalence classes of TP and T:P. So we write

de[fyDng]7 dsz[LDg’faDngyDgyf]y
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where
Dyf: T—S and DLf: T—§.

~ - - 1 1 -
(¢) We put Vydf =[[gpolpodf: T — TP, Vydf =]]p0lpod?: T — TP
1.2 - Observed motion and absolute velocity addition and Coriolis theorem.
The basic definition of observed kinematics is the following.

Definition. The motion of M observed by & is My= poM: T — P.

The welocity of M observed by & is (dM)gp = TpoddM: T — TP.
The welocity of the observed motion My is dMy: T — TP.
The acceleration of M observed by # is (VAM), = TpoVdM: T — TP.

The acceleration of the observed motion M, is V,dM, EH‘?OTQ—;OZ?Q My

T - TP.

1.3 - We can make the comparison between the observed entities and the
entities of the observed motion. One gets simplified formulas by means of
the identification E ~ T x P. '

Theorem. Absolute velocity addition and Coriolis theorem. Omne has

M~M,, DM—PoM=D,M,,
DM = D% M+ (650 M 5)(Dy M) + 2(Ryp0 M) X Dy My -+ Po M, .

and
(@M), = dM, = [M, Dy My),
(VaM)y = Vil y — N p8M , + CpollM , + Dol
Vo dM5 = [M, Dy M),
Moreover

wFo My = M*=ato M , :i;lcodﬂ[gx = D.M*,
v @ko@’g,tleg, = D*M* 4 (I My) DM DM,

o - - -
@40V d My = DM+ 4 (I%0 Mp) DM DM 4 (21%0 M ) DM + I¥0 M, .
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If 2 is affine, then D*M = D3 My + e5(Dy Mp) 225X Dy M y+-Fo M, .

If P is rigid, then DM = D% M+ 224X Dy M, -+ Po M, .

If & is tramslating, then D*M = D% M, + P.

If 2 is inertial, then D*M = D% M ,.

2 - Relative kinematics

Let £, and £, be two fixed frames and let the subfixes « 1 » and « 2 » denote
quantities relative to &, and #,, respectively. Let M be a fixed motion. We
make a comparison between the kinematics observed by &, and 47,.

2.1 - Motion of a frame observed by a frame. If we consider &, as a set
of world-lines and &, as observing £, we are led naturally to the following
definition by (111,1,2).

We consider only free velocity and acceleration for simplicity of notations,
leaving to the reader to write them in the complete form.

Here D,p and Dj, are the derivative in the sence of (ILL1,1,b) with
respect to &, and the suffix 1 denote partial derivative with respect to the
first variable, i.e. the time.

Detinition. The motion of P, observed by P, is Plzépoplz TXE - P,.

The
The
The
The

mutual motion of (P, P,) is Pu’g) =P, — P,: TXE — 8.
veloecity of the observed motion P, is P, = (Dlg’f’m)oj: E 8§
wvelocity of P, observed by P, is Py, = P,oP,: E —8.

velocity of the mutual motion Pu’z, is Pu,z, Ele’u’g)oj: E —8S.

The acceleration of the observed motion Py, is f’m = (ng,z Plz)oj : E 8.

The
The
The
The
The

acceleration of P, observed by 2, is ?1,2 Epzoﬁlz E 8.
acceleration of the mutual motion P(l,r_., is ?1,2, = Dfp(1,2)°j3 ES.
strain of the observed motion P, is ep= Sﬁﬁm: E-=S*®S.

spin of the observed motion P, is d)m = (4/2)DP,,: E >S*®85.

angular velocity of the observed motion P, is 9, = ¥(A/2)v ?1.2'
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2.2 - We can make the comparison between the observed entities and the
entities of the observed motion, as shown by (I11,1,3).

Proposition.

P1=(W1,P12)3 TXE%TXPzEEy

i
)
3l

12:131_?":1_512’ fj.1,2:?_71=ﬁ12“;'‘5‘5”3(?12)'f-2-95;,><P12’}—ﬁ29

Y 2

il

1
il
!
i

-2; E10 == 81— &, Wyg == W1 — Wy, Qm:Ql"Qz-

2.3 - Immediate comparison between the quantities «12» and «21» is
obtained.

Jorollary.
P(l,"):"‘P(zl), P(m):—P(",l)y P(l,z):“P(z,l)y
0 —

€a1 W19 == — (Vgy 12="‘Q21; P11=311:w11:-911:0-

2.4 - One has time depending diffeomorphism between spaces concerning
2, and £, .

Proposition. TLet te 7. The maps

Prar = p2°P1T: P, —P,, [el, = [pu(7, €)12,
and
Tpre: TPy > TPy, [6,uly ~[Py(z, ), Py(z, &) ()]s,

are C= diffeomorphisms.

2.5 - Velocity addition and generalized Coriolis theorems. As conclusion, we
get the comparison between velocity and acceleration of the motion M observed
by 2, and 2,.

Theorem. Velocity addition and generalized Coriolis theorems.
(@) My, =poM, .
(b) Dy, My = Dy M, -+ PooM .
(€) Dp My, = Dy My + ey0M(Dy My ) + 2000 M XDg My -+ Pryo M .

If 2, is inertial and P, is rigid, then one obtains the usual formulas.






