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DAviD F. DAWSON (%)

7 Summability factors for certain sequence spaces (**)

1 - Introduction

In this paper we study summability factors for the following subspaces
of the space s of complex sequences.

m: bounded sequences, C: Cesdro summable sequences, c¢: convergent
sequences, ac: absolutely convergent sequences, qe: guasiconvex convergent
sequences.

We note that ac = {xes: 3|Aw,| < oo} and qc ={rec: 3 p|Ak,|< oo},
Let B = {m, C, ¢, ac, qe}, and if w, v € B, let (#, v) denote the set of all fes
such that the sequence of partial sums of z f»@, 18 in v whenever the sequence
of partial sums of ¥ a, is in . Our problem is then to characterize the ele-
ments of #xF. \

Hadamard [2] characterized (c, ¢) in 1903, and Kojima [4] proved a the-
orem in 1917 from which characterizations of (C, C), (G, ¢), and (¢, C) can be
obtained. It is well known (or at least clear) that (ac, m)= (ac,c)
= (ac, ac) = m. Although there are twenty-five elements of Il x B, each of
which is used to name a sequence space, there are only twelve distinet spaces
so named, as we shall see in the summary at the end of the paper.

2 - Notation and background

Throughout, we will use ¢ =— {o,} and g = {f,} to denote the partial sums
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of > a, and > f»a,, respectively. The matrix F = (f,,), defined as follows

0 it p<yq
fm:fa lfp:q
Af, i p>gq,

will be useful, since Fo = f.

Let 1= {zxes: zlmp{< col, ep={wes: lim,@, =0}, ac,=acnN ¢,
cy={z € s: {nw,} € m}, qc =qec N e, and let M denote the set of all complex
sequences having bounded Cesaro means.

If A is a complex matrix, let Y4 denote the matrix whose p, g-entry is
>y, let 224 = X(X4), and let A4 denote the matrix whose p, g-entry
I8 py— Uy I @wes, leb Aw= {Az,}, A= AAw), o2, =@ + ... + @y,
and ox = {ow,}.

We state the theorem of Kojima previously mentioned.

Theorem K. In order forf to have the property that f is Cesaro summable
of order t whenever o is Cesdro swmmable of order v, it is necessary and sufficient
that the following properties hold

b B Ul ‘
Sup, w | fa | < o0, SUD» —5 z AW z ( )Aﬁf':’l Ar-@nf. | < oo,

=1 q=0

where AP= (n+ ¢— 1)!(g}n—1)1), AT9=0, n,q=1,2,3, ..., and each of
1 and t is a nonnegative imteger. ‘

3 - Characterizations

Hadamard [2] showed in 1903 that (e, ¢) = ac. The Silverman-Toeplitz
theorem, which gives three conditions necessary and sufficient for a matrix
t0 be conservative (A€ c whenever z € ¢), appeared some eight years later,
and, when applied to the matrix F, affords a simple proof of Hadamard’s
result, as well as characterizations of (¢, m) and (m,m) as follows. If f eac,
then f e (m, m) and f € (¢, ¢) C (¢, m). Now suppose f € (¢, m) but féac. We
see that f satisfies two of the § — 1' conditions but sup, > el = oo It is
classical under these conditions to construet a null sequence which the matrix
transforms into an unbounded sequence, and this would contradict our as-
sumption that fe(c, m). Thus fe(e,m) implies fE€ ac. So (¢, m) = ac
€ (m, m) € (¢, m). Hence (¢, m)= (m, m) = ac.
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Kojima’s theorem for =0 and ¢ =1 states that fe (c, Cy iff

n—1

Supa|ful/n < oo, sup.(1/n) 3 [(n—i--1)Af, + fiy| < oo
g1
For ¢ fixed we have ((n— i 1)/n) Af, - fisafn —Af; a5 # — co. Hence the
second condition implies »2 |Af;| < oo, 50 that f € ac. Clearly f € ac impiies,
both of Kojima’s conditions. Hence (¢, C) = ac. Note that Kojima’s first
condition for this case is superfluous, since his second condition implies f € c.
Next we investigate (m,c¢) and (m, C). Suppose fe(m,c¢). Then feac
sinee (m, ¢) C (¢, ¢) =ac. If o €m, then

(%) 7l=znaﬂAfﬁ+fn+l Ean y

Pl

which means that {f,,;e,} converges since fec and > a,Af, converges. But
convergence of {f,,,a,} for every xem implies that fee,. Hence feac,.
Conversely, if feac,, it follows from (%) thab fec whenever « em. Thus
(m, ¢) = ac,. We also find that (m, C) = ac, as follows. If f € ac,, then
f € (m,¢) C (m, C). Conversely, if fe (m, C), then fe (e, C) = ac, and conse-
quently from (%), {fn .0} is Cesaro summable for every « € m since for o € m,
B is Cesdro summable and > a,Af, is convergent. This of course implies that
fec,. Thus feac,. Hence (m, )= ac,.

We could use Kojima’s theorem to characterize (C, ¢), but instead will
use the matrix AP and obtain a characterization of (C, m) as well. We note
that (AF)(ox) = # for all . Form a matrix G from AF by multiplying each

element in the ¢-th column of AF by ¢, ¢=1,2,3,.... Then
0 if p<yq
-/ it p=gq
Q(fa—gfq-u) if Z’=Q+1
qA, ifp>qg+1.

Clearly G transforms the Cesaro means of « into B, and 5o f € ¢ whenever «
is Cesaro summable iff & is conservative. Since & has convergent columns
and the sequence of row sums of @ is convergent (in fact constant), then by
the §— T theorem @ is conservative iff

(%) sup,élgml = sup, (3 1A%, [+ (0 — 1) [fys — 2f0 | + 2 Fa]) < 00,

g=1

and this condition holds iff 3% ¢|A%,|< oo and {gf,}em. Hence
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(C, e)=qenN c{,:qc(', . If (s) does not hold, then there is a null sequence & such
that Gz ¢ m. There exists o€ C such that the nth Cesaro mean of o is @,
n=1,2,3,..., so that Go = f¢m. Hence if fe (C, m), then (:=) holds, and
so feqe,. Conversely, if f € qeg, then fe(C,¢) € (C, m). Thus (C, m)= qe, -

Next we show that (C,C)= qc by utilizing Kojima’s theorem, which
states that for r=1t¢=1, fe(C, C) iff

n—

Sup, [fa]| < o0, Sup, 2 (ijn)}(n — @ - 1) A%, + 20f; 11 |<co .

=1
Tor ¢ fixed, we have
(fn)(n — 1 4 L)A, + (2i[n) Afpq — 1A%, as n —> oo,

so that Kojima’s second condition implies that >2; i[A%,[< oo, and this
together with his first condition, implies that feqe. Conversely, if feqc,
then Kojima's two conditions hold since f € ¢, > i|A%;|< oo, and {iAf} is a
null sequence. Thus (C, C) = qc.

‘We can show that

¢, ac) == (m, ac) ,

( =1

(¢, qe) = (m, qe) = (G, a’c):{f: Zp”v|< 00}7
(

(

ac, qe) = ¢,
G, q¢) = {f szlfz:l< 00}7

but will include a proof of the last statement only since the other proofs are
similar to the one we will give and much simpler.
Suppose Y p2|f,| < oo and € C. We have

Aﬂp = fa;+1a1)+1 ) pA‘“’ﬂ,, = p(fm—{-l Qpyr — faa+2 a’p+2) .

Now since « € C, then by a well known property of Cesaro summable series
pla, >0 as p — oo ([3], p. 484). Thus

SIABIES 0+ 1) o] 1222 < oo,

p+1
2 2 la’ﬂ+1{ 9 la’a’+2l
Z?lAﬁvlgz(P+1) 1fa>+1lp+1+2(p+2) lfm+2‘ < 00,

p+2

and so f e qe. Conversely, suppose f € (C, qc) but > p*|fp| = co. Then either
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2 (29 |fon] = 00 Or 3 (2p 4 1)?|fapsa| = oo. Without loss of generality, assu-
me the latter. There exists a nonincreasing null sequence {ron_a} such that
zp21f2p+1[7'2p+1: co. Let

ay =17y, Gy =0, w=1,2,3, ...
Agy_y = (2 - 457?’) Ton_1y N = 1, 2, 3, ey
Asnyr = (20 — 1) 790y + (20 F 1) 7904, n=1,23, ...

Then

n n
Kgnys = Lgnpp = Oy z gy 1 21“4p+1
p=1 D=,

=1 32— 4p) Ty + SLEP — 1)1y s - (29 & 1) 7]

p=21 p=1
— 7y — 2, +g (2 — 4p)Papr + 74 +,§ (2p — 1)1y
+§ (25 + 1) Fappa + @10+ 1) 7y
=p§<2 — 4p) 7oy +§ (2p — 1)7‘2,,_1'+q’=z'2 (20 — 1) Fgos + (21 1) Fanya
= (2% + 1) Tpny n=0,1,2,..,

and so

Lgnia == Olgnya = (G ~F oo - Gynpn) + Qanis = (20 + 1) ¥any1 -+ Guinpn s
= (20 + D) ronyy + (— 2 — AN Popyy = — (20 4 1) 79041, n=20,1,2, ...

4n
Thus Y o, =0, so that

p=1

4nt+1
z Oy = Oy = (20 - 1)} ¥ppps

p=1

dn42 )
Doy == (20 1) 7s,py + Ognge == 2(2n + 1) 75,4, and

p=1

4n+43
> 0= 2(20 4 1) 1y - Linyg = 221 + 1) onps — (20 4 1) 14004

p=1

= (2n -} 1)72n+1 .
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Hence for #=0,1,2,..., we have

0< Oy + ocz4+ + + XLania g Panit »
1 q

g=1,2,3,4.

So « e C since (oo,)/p —0 as p — co. But f ¢ qe since

@ feed o]
z 2" IAz,B‘.:n I = z 2’"’ ‘f:zn-;-l a’2n+1 — Jange2 a‘2n+2 i = z 2”’ f211+1 d2"+1 [
= neml

n=1 n=1

H

E: 4”’/|f4n+1 “4n+11 -+ 21(477' — 2) [ fana gy |

4n U4n+1 } (2n + 1) 7onps -+ i (4n — 2) | fana ; (4n — 2) 7354

1 n=1

Ms

=

[

k3

> 3 (@) [fansa Fanss + 2 (21— 12 fana [T

n=1

©
= z n? If21z+1 ‘1.2"+1 =00,
n=1

This contradicts our assumption that fe(C, qe). Thus if fe(C, qc), then
> p*|fy| < co. Consequently (C, qc)= {f: > p*|fo] < oo}

Next we study (qe, m), (qe, ¢), and (ge, C), using the matrix 22F. We
note that

qfs if p=1
p, g-term of X2 F = gfi—fo— ... — [» Tl1<p=yq
Qfl—fz—“---—fa+1 ifp>§l7

and (Z2F)(A%x) = B— k if xeqe, where k is the constant term sequence
each term of which equals f,- > a,. Divide each element of the ¢th column
of X:F by ¢, ¢ =1,2,3,.... Call the new matrix H. Then H transforms
{p A%} into f— & if € qec, and

fi itp=1
byy= fi— (fo 4+ - +1)la t1<p=q
h— (et ..+l Ep>gq.

Since H has convergent columns, H is an [ to ¢ map iff SUDp ¢ | e | < 00, 2
condition which alone is necessary and sufficient for H to be an [ to m map.
It is clear that sup, .|k, |< oo implies {(of.)/q} € m, and the converse can be
shown. Since each wel gives rise to an aeqe such that z = {pA%}
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(1], lemma 4), then f € (qe, m) implies {(of,)/¢} € m. Conversely, {(of)]q} em
implies f € (qe, ¢) € (qe, m). Thus (qe, ¢) = (qe, m) = M. Next we show thatb
(qe, C) = (ge, ¢). Suppose fe(qe,C) and again consider the matrix H.
Replace each column of H with the sequence of Cesaro means of that column.
Call the resulting matrix K and note that K transforms {pA%x,} into (— k)
plus the sequence of Cesaro means of B if @ € qe. Furthermore we see that

limvkm = fl - (fz "{" -t fa—;—l)/q .

Since f € (qe, C), then X is an [ to ¢ map so that S$UPy | Ky | < oo, Which implies
that

_ht et e

q l<°°7

sSup, lfl

and this by the proof above implies that f € (qe, ¢). So (qe, C) € (qe, ¢) € (qe, C),
and consequently (qe, C) = (qc, ¢).

Similarly, by using the matrix X, we can show that (ac, C) = m, but
will omit the proof. '

The author’s theorem in [1], for % = j = 2 can be stated as follows.

In order for Axeqe whenever z € qe, it is necessary and sufficient that
the following conditions hold:

(1) 4 has convergent columns,

(2) (St e e,

(3) Uws (1) 5 5 ] < o0,

(4) sup, (1/n) i Pl i’ }3 Alg,,| < oco.

p=1 7=l ge=]

The spaces denoted by BV’: and BV, in [1], are denoted by ac and gc,
respectively, in the present paper. We will apply this theovem for 4 — F
and # = o« in order to characterize (qc, qc). Note that (1) and (2) hold for F.
Simple calculations show that

5 nf, ifp=1
2 Zhu=wh—fo— =1, 1:f1<p§"7'
L= 'n’fl_fz’“'--—fn-;_l tp>mn, .
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and

f:ﬂ-}-l f77+2 if 2) <N

Z ZA f”q A3 z zfm 17+1 if p="n

r=1 ¢=1 r=1 a=1 0 if p>n.
Thus (3) holds for F iff {(¢f,)/q} € m, and (4) holds for F iff

1A+ 2-[Af ]+ ... -+ (0 — 1) [Afs

| ;
{ - tem and fem.

This last condition is equivalent to

1'!Af1i+2}Af2l + s +,’7"|Afn

"

i}em and fem.

{

Clearly fem implies (3) for F. Hence (ge, qc) = {fem: {|pAf,|} € M}.
Similarly, by using the author’s theorem in [1]; for k = 2 and j = 1, we
can show that (qe, ac) = {f: {|f,|} € M}, but will omit the proof.

4 - Summary

Since the preceding section was written in narrative style, we include the
following summary of our results for the convenience of the reader.

1. (e,e) = (¢, m) = (m, m)= (¢, C) =ac.

2. (m,e) = (m,0C)=ac,.

3. (C,¢) =(C,m)=qej.

4, (C,0) =qc.

5. (¢,ac) = (m,ac)=1.

6. (¢, qe) = (m, qe)=(C,ac)={f: I pifs|< oo}.
7. (0,q0) = {f: Sp*If,] < oo} .

8. (ac, m) = (ac, C) = (ac, ¢) = {(ac, ac) =m .

9. (ac, gc) = ¢;

10. (qe, m) = (q¢, C) = (qe¢, ¢) = M
11. (qe, ac) = {f: {|fo|} e M}.
12. (ge, qc) = {fem: {|pAf,|} € M}.
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Summary

In this paper we study summability factors with respect to five sequence spaces.
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