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B, K. LAHIRTI (¥)

On transformations of sets of positive linear measure (**)

1 - Intreduction and definitions

If A is a subset of the set of real numbers then the set D(A4) == {|@ — y|:
we A, ye A}, is called the distance set of A. If A is of positive Lebesgue
measure, Steinhaus [7] proved that D(A) contains an interval with the origin
as an end point. This result has been generalised in the n-dimensional Euecli-
dean space with Lebesgue measure and in topological groups with Haar measure
in various ways in the papers ([4], [5]24)-

If (£, o) is a metric space with a measure on £ and 4 is a subset of B,
then the distance set of A4 is defined to be D(A) = (o(w,y): 2€ 4, ye A).

If 4 is a measurable subset of I with positive measure and if D(A) con-
tains an interval with the oiigin as an end point, then this property will be
referred to as the Steinhaus property of distance sets. For A c E, let

A5(A) = sup[inf { 3 d(d,): 4,c B, a(d)< 8}, Ac U4],
>0 i=1

=1

where d(4,) stands for the diameter of 4;. Then A* is a metric outer measure
and the restriction of /A* to the measurable sets is known as the linear measure /.
With respect to the outer measure A%, all Borel sets are measurable.

(*) Indirizzo: Dept. of Math., University of Kalyani, Kalyani, West Bengal 741235,
India.

(**) The paper was prepared while the author was a Visiting Professor at the Uni-
versity of Florence, Istituto Matematico « Ulisse Dini», under the invitation of the
C.N.R.-Italy, by the initiation of prof. Roberto Conti for which the autor is thankful
to him. — Ricevuto: 13-VI-1979.
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If f is a continuous function from [0,1] to E, then ¢ = f[0,1]c F is cal-
led @ curve in E. The curve is called simple if f is injective. It is called recti-
fiable if A(C) < oo.

It is proved in [1] that any simple rectifiable curve in the plane have the
Steinhaus property for distance sets, while in [2] it is shown that there exists
a simple rectifiable curve in a general metric space which has not the Stein-
haus property. However, if a certain smoothness condition is satisfied
by C, then Boardman [3] proved that C has the Steinhaus property. In 2 we
obtain a generalisation of the theorem of Boardman along with certain other
results. In 3 also we extend the result of Boardman in a normed linear space
but to a somewhat different directions.

It ¢ c E is a simple rectifiable curve determined by the map 7: [0,1] - F,
then f induces a linear ordering on ¢ defined as follows: if @,y € C then z < y
if and only if () << ~Yy).

If @, b€ 0 and a <b then the subarc {a,b) of C is defined by <a,Db>
= (ce C: a<<e<h).

It may be verified that 4 is continuous in the sense that if be C, a,€ O,
Gy << Uy < b and lim p(a,, b) = 0, then

(1) lim A(<a,, b>)=0.

Also, if the simple curve C is determined by C = /[0, 1], then because
[0, 1] is compact and (C, ) is Hausdorff, the surjective restriction of : [0, 1] = €
is a homeomorphism.

Definition A [3]. Suppose that >0 and B is a subset of ¢. Then
B(r) = {z€ C: Ju e B such that v <=z and o(u,2) =1} and B(— r) = {ze C:
Ju e B such that z<u and g(u, 2) = 7}.

Definition 1. The simple rectifiable curve C is said to satisfy the con-
dition (A), if there exists ¢> 0 and d,> 0 such that for each subset Bc C,
0 <7< d, implies d(B)>c[d(B(— )]

Definition 2. A compact subset K of O is said to satisfy the condi-
tion (B) if dist [K, f(1)] > 0, where dist [K, f(1)] is the distance of the point
f(1) from the set K.

Definition 3. Let ¢ be the family of all linearly measurable sub-
sets of ¢ and Ad,e@, r=1,2,.... If there exists a set Ac @ such tha
A[4, 4 A1 —0 as r — oo, then the sequence of sets {4,} is said to converge
to the set 4 in @, where X » Y denotes the symmetric difference of the sets
X and Y.
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The smoothness condition required by Boardman is that d(B) is not
too small compared with d[B(— #)]. His theorem may be stated as follows.

Theorem A [3]. Let C be a simple rectifiable curve in a metric space
(B, o) satisfying the condition (A). If § is a linearly measurable subset of C,
with A(S) > 0, then D(S) contains an interval with the origin as an end point,
that is € has the Steinhaus property for distance sets.

2 - Extension of Theorem A

Theorem 1. Let C be a simple rectifiable curve in a meiric space (B, o).
Suppose that there exist constamis ¢>0 and dy >0 such that for any finite
number of sels By, B,, ..., B,c 0

dB,NB,N..NB)>c (A[By(— 1) N By(— 75) O ... N By(— 72)])

whenever 0 <7, <d,, i =1,2,...,¢q. Then if S is a linear measurable subset
of O with A(8)> 0 and p be any positive integer, there ewists 7> 0 such that
if 71572y ooy Ty are chosen any p numbers from (0, 7n), then the set of points v e S
such that there exisis x;€ 8 with o(w, x;) =7, 1 = 1,2, ..., p is a set of positive
linear measure.

Proof. Suppose that C is determined by f: [0,1] = ¢. Then because A
is continuous by (1), we may assume, without any loss of generality that
dist [f(1), 81> 0.

Since C is rectifiable, i.e., A(0) < oo, there exists a compact set K and an
open (in C) set G such that

(2) KcSc6cC,

(3) el—a, A(K)>%A(G—K).

The relations (2) and (3) may be assumed by following the same technique
as adopted in the proof of theorem 13.5 of [6].

Since K c 8, it is sufficient to show that K has the property as stated
in the theorem.

Let 6 > 0 be such that A(K)— § > (1/e) A(G — K).

From the definition of A(XK) it follows that there exists g > 0 such that
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for all & with 0 <é&'<ég, all covers {A4,}72, of K with d(4,) <& has the
property

(4) S aA)>AK)— 6.

=1

If d, = dist (K, ¢ — G), then d;>0. Let = min(d,, d;, &/3). Then if
71y ey -y 7 D€ any p numbers such that 0 <» <%, i =1,2,...,p, then it
is clear that

(5) KEr)cG, i=1,2,..,p,.

Let ¢ be any number satisfying 0 <e<e/4 and Bic ¢ be such that
aA(Bj)<eand K(r)cUB}, i=1,2,..,p.

i=1
Now #; is less than d, and f(1)e C— G, so if uwe K, then p[f(1), u]>r;
and since <u,f(1)> is connected, there exists ze ¢ with % <z such that
o(u, ) = r;. So, z€ K(r;) and so there exists m such that z € B! and therefore
w € Bi(—1;) and so KcUBi(—r;) for i=1,2,...,p.

i=1

Let A = K(r,) N K(r,) N ... K(r,), then

© Ac(UB)n(UB)n..n(Us)c U BaBiA.. B2

i=1 =1 F1kyaeyme=]

and

Ec[UB(=m]n[UB(=m]n..a[UB(=r)]

j=1 Jj=1 i=1

c U [BY— 1) N Bi(— 1) N .. O B2 (— 1,)] .

Feksenrs

Now, 2, 2, € By(— r,) imply that there exist u,, u,€ B; such that o(u,, 2))
=r7; for j=1,2. So, gle, 2,)<2r; + d(Bi) < (11/12) & because 7; << 7<&/3
and d(B}) < &< /4.

So, d[Bi(—r:)]< & and therefore d[B}(— )N By(—1r)N...NBL(—1,)]<é&.
So, by (4) > A[BY(— 7)) N BY— 1) N ... N B2 (— 1,)]>A(K) — 6 >

FyKyreeym=1

(1/e) A(G — E).
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Now since each r; is less than d,, we have by the condition of the theorem

o0

> dB;NB;N..NB]>c¢
Fikyee,m=1

S A[Bj(— 11) N Bi(— 1) N ... N B2 (— 7,)]> o[A(K) — 6] > A(G — EK) .
Fakyesyme=l

Since d[B; N By N ...N B%] < ¢, it follows from (6) that
) A(A) > o[ A(K) — 8] > A(G— K) .
By (8), Ac @ and so

(K NE@) N0 K@) =AK N 4)>A(6) — A(G — E) — AG— 4)
= A(A)— A(G— K)> 0,

by (7). Hence K N K(r) N ... " K(r,) is a set of positive linear measure. Let
ze KN K(r)N...Nn K(r,), then #e K and because e K(r,);, i = 1,2, vy Dy
there exist »,€ K such that o(w,»;) =17, ¢=1,2,...,p. This proves the
theorem.

Remark. If p =1, we obtain that there exists a positive number 5
such that if »; be any number with 0 <7, <, then the set of points ze K
for which there exists y € K with o(z, y) = 7y, is a set of positive linear measure.
This result itself is more general than Theorem A which assured only the exi-
stence of a pair of points # and y of K such that o(z,y) = .

Theorem 2. Suppose that the curve C satisfies the condition (A) for ¢> 1
and K is a compact subset of C with A(K)> 0 that satisfies the condition (B).
If {7’,,,} 18 @ sequence of positive numbers converging to zero, then K(r,) — K in G.

Proof.Under the supposition of the theorem it follows from the proof of
Theorem A, because ¢ > 1, that there exists a positive number n such that
if 0 <7<y, then A[K(r)]>A(K).

Equivalently, since », — 0, there exists a positive integer N, such that

(8) A[K(r,)]>A(K) whenever n>N, .

Since K is a compact subset of C, for ¢ > 0 arbitrary, there exists an open.
(in 0) set G such that

(9) KcGcd and A(G— K) < ¢[3.
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Let d = dist (K, C— @), then d> 0. There exists a positive integer N.
such that #, < d for n>2N, and so K(r,)c @ for n>N,.

Let X, = KN K(r,), then X, c@ for n>N, and s0 X, =G — (G— K)
— [G — K(»,)]

So for n>1N,,

AX,) > A6 — MG — K) — A[G — K(r)] > ALK (r)] — /3

from (9). If N = max(N,, N,), then from (8) for a>2N, A(X,) > A(K)— ¢/3
> A(G) — 2¢/3 > A(G) — . Consequently, A[K(r,) » K]<e¢ for a>N. So,
K(r,) - K in G.

Corollary. Under the hypotheses of the above theorem, if A is any measur-
able subset of C, then K(r,) N A —-KNA in G

Proof. We have
A[{K @) N A} s {KN A} <A[K(r,) a K] =0 as n - oo .

Definition 4. For r> 0, let ¢(r) = A[K N K(r)], where K is a compact
subset of ¢ with A(K)> 0 that satisfies the condition (B). For r = 0 let
P(0) = A(K).

Theorem 3.The function @(r) is right continuous at the origin provided
the curve C satisfies the condition (A) for ¢> 1.

Proof. Let {r.} be a sequence of positive numbers converging to zero.
Then by the corollary and Theorem 2, K(r,) N K — K in G. Clearly then
A[K(r,) 0 K] — A(K), i.e., ¢(+.) = @(0). This proves the theorem.

3 - Extension of Theorem A in normed linear space

In this section, we suppose that F is a real normed linear space. Let f
be a continuous injective map of [0, 1] into F and € = f[0, 1], where A(C) < co.
The definition of curve, linear measure ete. will have the same meaning where
o(z, y) is to be replaced by e — y|.

Definition 5. We say that f is homogeneous in a neighbourhood of 1
if there exists 6’ > 0 such that for any real number «, 1<a<<1-+4d', flaw)
= af(x), for all z, xwe[0,1]. In this case we say that fe H(l).
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Definition 6. Let Bc ¢ and > 0. For real number a, let B(r, a)
={#€C:JueB, u<z and |au— 2| =1}, B(—r, a) = {#geC:JueB, z<u
and |aw — 2| = s},

It may be noted that B(r,1) = B(r) and B(— »,1) = B(— r) in the nor-
med linear space E.

Theorem 4. Let C be a simple rectifiable curve in a normed linear space I}
determined by fe H(1). Suppose that C has the following property; there exists
¢>0, 3,>0 and dy> 0 such that, for cach subset B of C, 0 <r<d, and
1<a<1+ 6, tmply A(B)>c[d{B(— rla,1/a)}]. If S is a linearly measurable
subset of C with A(S) > 0, then there ewist > 0 and 6 > 0 such that if © and a
be any mumbers with 0 <r <7 and 1<a<1-}0, then the set of points xe S
for which there exists we S with |#— au|= r is a set of positive linear measure
(0 depends on 7).

Proof. We can assume by (1) that dist [f(1), S]> 0. Since S is meas-
urable and /A(0) < oo, there exists a compact set K and an open (in C) set G
such that K c 8 ¢ & c ¢ and moreover f(1) € € — @ and A(K) > (1/e)A(G — K).
Let 4, > 0 be such that A(K)— ¢,> (1/e)A(G — K). There exists then e > 0
such that for all & with 0 < e<&, all covers {4}, of K with d(4,) < ¢ satisfy

(10) S A(d)sAE) — 8, > LA ).

=1

Let d, = dist (K, ¢ — @), then d, >0 and M > 0 be a number such that
l#ll< M for all # in K. Let d,> 0 be chosen small enough to ensure Md, < d,.
Suppose that # = min[dy, (1/3)e, d,— Md,]. So n>0. Let 0 << /2 and
1<a<1+0d,, then it may be verified easily that

(11) K@, a)cG.

Let ¢ be any number with 0 < &< g/3 and B, c € be such that d(B,) < ¢
and

(12) K@, a)cUB,.
i=1
Suppose that we K, then [f(1)— u|>2r. It is then eclear that there
exists d;> 0 independent of %€ K such that |[f(1) — au] > r for all « with
1<a<1-+9d;. Since fe H(1) and f is continuous, |f~*(u)—1|>0 for all
we K. So, there exists d,, 0 < 0, < min(d,, d;, §') which is independent of
we K such that aue € for all & with 1<a<148, whenever u ¢ K.

1413
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As <au, f(1)> is connected, there exists ze C with 2> au and therefore
> u because fe H (1) such that Jauw— z|=1r. So, z2e K(r, a) for 0 <r<<n/2
and 1<a<146,.

This means that there exists 4 such that ze B; and so » e B,{— r/a, 1/a).
Therefore

1

a,)'

(13) KcDBi(——%,

i=1
If now 2y, %, € By{— rla,1/a) then there are wu,,u,€ B; such that

[Z2—a]=2 and |2—z)=_.

So,

Uy

s — = lle — 2

Uy Uy U roor 1
_f_z——a——}—;—zgﬂ<5+a+;d(3i)

=2 L aB) <2+ A(B) <+ A(B)

&p &y &y _ 2
<§+(I(Bi)<”§+g——§80a
because d(B;) < € << &/3.
So, A[B(— r/a, 1]a)] < g. By (10)

2 r 1 1
> d[Bi(—E , 5)]>A(K) —0; > ZA(G—-K) .

=1

We have 0 <r<<9/2<d,. Let 0< d<min(dy, 6, b4, /M) and sup-
pose that l<a<1-+496. Then d(B,) >cd[B,(—r|a,1/a)]. Therefore > d(B,)

=1

>A(G — K) and hence from (12)
(14) A[K(r, a)] > A(G — K) .
Since by (11), K(r,a)c @, we have [K(r,a)N K)= @ — [G— K(r, a)]

— (G— K) and s0 A[K(r, a) N K] > A(G) — A[G— K(r, a)] — A(G— K)
= A[K(r, a)] — A(G — K) > 0 from (14).
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So, the set K(r,a) N K is of positive linear measure. Let z e K(r,a) N K.
Then z e K and x € K(r, a) implies the existence of w e K with law — 2| = ».
Sinee K c §, this proves the theorem.

H.

M.

H.
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Abstract

Boardman [3] oblained an extension of Steinhaus theorem [T] for distance sets for
sets of real numbers to the sets which are subsels of a simple rectifiable curve in a metris
space. In this paper we obtain, with certain additional resulls, generalisations of Boardman’s
theorem in a metric space and in a normed linear space.
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