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A. E. BARKAUSKAS (%)

A generalization of Ménage and Lommel polynomials (**)

1 - Introduction

The Lommel polynomials E,,(x) are polynomials in 1/z which occur as
the coefficients in the expansion of the Bessel function of order v 4+ = in
terms of the Bessel functions of order » and v — 1 [4]

Jv+n(a7) = Rn,l’(w) Jv(m) - -Rn—-l,f’-q-l(w) Juv_1(@) .

The Ménage polynomials U,(f) enumerate the permutations on n elements
where element ¢ may not be in position ¢ or ¢ 41, for i =1 to n— 1, and
element n may not be in position » or 1. The Ménage polynomials satisfy
the recurrence [3]

(n— 2) Ua(t) = n(n — 2) Up_y(t) + n(t — 1)2 U,_o(t) — 4(¢ — 1)»,
1.1)
Uty =2(t—1)+1, Uyt)=20—1)2F4¢—1)12.

The main result of this paper is that there is a surprisingly close connection
between these two sets of polynomials. In the following sections modified
forms of the Lommel and Ménage polynomials are introduced and generalized,
and formulas involving the generalized polynomials are obtained.

(*) Indirizzo: Univ. of Wisconsin - La Crosse, La Crosse, Wisconsin 54601, U.S.A.
(**) Ricevuto: 28-VI-1979.
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2 - Modified Lommel polynomials

We define modified Lommel polynomials f, »(#) = exp (— ani[2)R, »(— 2i/2),
which satisfy the recurrence

(2.1) Fryap(®) = (0 4+ 9) ¥f 5 o(@) + fuap(@)
together with the initial conditions f_, () =0, f,»(2) = 1.
The explicit formula is

2l @ —

Fupl@) =

) ('v)"“k pn—2k

E=0 k () ’

where (a), = (a)(a -+ 1)(a 4+ 2} ... (@ + k— 1), and if v is a negative integer or
zero, (v)._x/(¥), is to be replaced by (» + k)s_sr. The following formulas for

the modified Lommel polynomials follow immediately from similar formulas
for the Loommel polynomials [4]

(2.2) fn+1,v._1(a7) =(@r—1) mfn,”(x) - fn-—l,l’-{-l(x) y
(2.3)  fap@ = (= 1)"fa_r_apnl@),
(2'4) wgf:;,v (m) = wfn_}’(w) + fn+1}'(x) + fn_l,v(w) - fn_l,v+1(m) - fn+1,1’-—1(w) .

where the prime denotes a derivative with respect to .

3 - Modified Ménage polynomials
We define modified Ménage polynomials by

" U, 4-1) — 221
wn(@) = = n —:—1 : !

and. substitute into (1.1) to obtain the recurrence

@1 Wa (@) = (0 4 1) 2w, (@) 4 waa(@) +- 2,

with the initial conditions wy(x) =1, w,{z) = o | 2.
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Explicitly, the modified Ménage polynomials are given by

waw)= 3 (7" k T

n— k) gn—*,
2T T =

4 « The generalized polynomials

Recurrences (2.1) and (3.1) can be generalized by defining the polynomials

9:2(x) by the recurrence

(4.1) it s(@) = (n +9) agB2) + g, (@) + 2,

together with the initial conditions g (#) =0, ¢ () = 1.

—1,7 0,v
Thus we have g\ (2) = f.»(®) and g®)(@) = w,(z). The first few polyno-
mials are explicitly

(2)

g2(@) = v+ 2,
9@ = G+ 1)a* + 2o + Do+ (A + 1),
Gi(@) = 0)sa® + 2 + 1)22 + (4w - 2) + 200 + 1) & + 22,
g2@) = 0)s0% + 2 + 1)425 + (v + 2)(Ap + 3) + 3 1 1)) 22
+ A3+ Na+ (244-1).

Theorem 4.1. For n>1,

I2@) = Fup(@) + 43 Fusrs(®)

=1

Proof. TForn =1 and 2 direct substitution verifies the result. We assume
the theorem holds for all n < %k and use recurrence (4.1) together with the
induction hypothesis to write

B2

42 G = fep@) 20+ b= 10 3 fusyprs(@) 13 fuoeyple) + A

In recurrence (2.1), replace n by k—1—j, » by » 4 j and substitute into
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(4.2) to get

G20 = Fupe) + 2 3 Fecgpasl@) + 2o+ b= Do+ 2

= For#) 4 A o)

=1

which completes the proof of the theorem.
We have as an immediate corollary by inversion the formula

n

(4.3) Fapl@) = gi(@) — 4 3 (1— A=2gi2, (@) .

=1

The recurrence (4.1) can be used to define gi(x) when n is a negative

integer. In particular, it is easy to verify using induction and recurrences
(2.1) and (4.1) that for n a positive integer

() (—A4)

g—-n,v(x) = gn—z,:z—v(w) - Z'fn—‘.’,z—l'(w) .
If »>2 we apply Theorem 4.1 and get

n—2

(4.4) 9(—;'7).,;:(37) = (1— N)fases(®) — A froa—sovis(®) .

i=1

For 1 =0, (4.4) reduces to Graf’s result [4] f_, +(®) = fr_o.0(x). For y =1,
A =2, (4.4) becomes by Theorem 4.1, w_.(®) = — w,_o(x), 2 result obtained
by Carlitz [1].

If we apply (2.3) to Theorem 4.1, we get

g0@) = (— 1)*fu sna(®) F 2 3 (= 1) fas s nja(®) -

=1

Taking v =1, 2 =2 we have the following relationship between the modified
Ménage polynomials and the modified Lommel polynomials

(4.5) Wo(@) = (— 1) fo_a(®) -+ 2 i (= 1) fuy nl®) .

=1
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5 « Other recurrences

The following lemma will be used to derive further recurrences for the
(A
gw(w).

Lemma 5.1. For A0,

Z jfn—i,v—}-:‘(w) = Z} 2-1 (1 - (1 - 2)] )gr(zej,r-*‘j(w) .

Proof. 2 Ejf"'—f,”-i-f(w) = 2 z

j=1 Re==

,fk_.j,i’.;_n—-k-;.j

3
=1

I

-

il
M=

[9224_,...,;({”) - fk’v+n_7;(m)] ’

k=1

by Theorem 4.1. Using formula (4.3) we get

n k
z A Z (1— At giﬂj,v%—w(iv) ’
=1 =1

changing the order of summation by defining » =n— k4 j, we get

2 X =gl (@)

Since A 50, the inner sum is A-(1— (1— 4)r) which completes the proof.

If we apply Theorem 4.1 to g;’;:l’v_l(m) and use (2.2), we have

(2)

gn+1,v—1(w) = (V - 1) wg;;’:,(-’,v) + g:;;il,v—i‘l(w) + A + b z jf?l—j’l’+j(m) .

j=1
By Lemma 5.1 we have the following generalization of (2.2)

(8.1) Gadrpal@) = (v —1) 20.3(®) + 9:2051:(2) + 1

T él( 1—(1—=2)) g:f_’j,vﬂ(x) .
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If we add (n-+1) wgff)v(:v) to both sides of (5.1) and use the fundamental
recurrence (4.1) we get

grﬁl,v(a’) - gr(ll—)l,v(’/'v) + 95191,1‘4-1(53) - .(Iy(zi)l,v—l(x)

= (n+1) 2g2) — 0 3 (1 — (1= 1)) g2, (@) .

We will now obtain some recurrences involving derivatives.

Lemma 5.2, oty (@) + g2 ()

= 200(@) + (v — 1) @fap(@) + (2 — 2)[fnp(@) — fuzpsa(@)] -

Proof. Apply Theorem 4.1 to both ¢, (z) and g%, .. () and collect

terms to get

(2) ()

Gt —(T) T+ Gy 110 (@)

= fn+1,v_1(w) + fn_1,1'+1(-’v) + an,v(w) + ;Lfn_1,1'+1(w) + 24 z fn—a',"—.l-;i(x) .

i=2

Add and subtract Af,_ys..(%) + 2fap(2) and use (2.2) and Theorem 4.1 to
complete the proof.

Differentiating the formula in Theorem 4.1 and using (2.4) we get the
following recurrence, where the prime denotes a derivative with respect to x

(5.2) 2* g ()
- wgf:,:a(w) + g:f:{)-l,v(x) + giz;.—)l,v(a;) - g;;il,v—l-l(m) - g:ri)-l,v—-l(w) .

If we use the fundamental recurrence (4.1) to replace ¢ (x) and ¢*, (x)

respectively, we get the alternative forms n_w
(5.3) w2 g ()

= (n+v—1) 2gi(@) + 202, @) + 2— g2 @) — g2, (@),
(5.4) w2 g ()

n,v

=—(n+7»+1) 2g,(@) + 2053, (@) — A— g2, @) — g2, () .



[7] A GENERALIZATION OF MENAGE AND LOMMEL POLYNOMIALS 59
If in (5.3) we use (4.1) to replace g, , () we get

(5.5) w2 g (@)

= (n+v—1) algP@) — g2 (@)] + 202, (@) — g1 a(@) — 42, (@) .
Similarly, in (5.4) use (4.1) to replace ¢, ,..(z) to get
(5.6) a2 g (@)
= (n+ v+ 1) ol (@) — g @)] + 200, (@) — ¢ (@) — g2 i(@) .

Formula (5.3) is a generalization of Riordan’s formula [3] which in our
notation is w,"(m) = (e — 2) w,(x) + 2w,_1(x) + 2. To see this set A1 =2,
y =1 in (5.3) and use Lemma 5.2.

We also have the following two formulas relating the sum of derivatives.

In (b.5) replace » by n-+2, » by »—1 and add to (5.4) to get

@[g, (@) + ¢ ()]
= (n+2) 2g), , (@) — (n+2) wgB(@) — (v — 1) aghw)+ (v — 2) ag®,, (@) — A
— (n 4 9) wglly ,o@) + 081 o@) + g @) — g @) — ¢R, (@) .
Using the fundamental recurrence (4.1) we get
(8.7) 2[R, (@) + ¢ (@)]

( + f)) w[g(:{io 1!—1( ) - ggi)}( )] + g;;:i)-l,v—l(w) gfz;—)-l 1+1(/U)

—(—1) wgf,’l( @) — 9,(123,v_=»(w) +(—2) wgi;}-zz,v-—l(w) + 9(21 () -

If 2 =0, (5.7) becomes Nielsen’s formula [2] which in our notations iz

(@) + Friapa(@)] = (0 F 2)[fasepa(@) — Fus(@)] .

The second formula is obtained by replacing » by # 4+ 1 in (5.3) and
adding to (5.4). The result is

(5.8) 22[g7) (@) + ¢ ()]
= (n+») agl), (@) — (n +» + 1) ag® (@) + 202 () I 292, (2)

(2) (2) Ay . (A}
- gn,v+1(m) - gn—{-?.,v-—l( ) - gn—]_,v-i—l( ) gn—f—l 1—1(w) .
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If we set 2 =2, v =1 and apply Lemma 5.2 to (5.8) we get Riordan’s
formula [3] which in our notation is

afw, (@) + w,(@)] = (0 4+ 1) w,.(0) — (0 + 2) w(2) .

6 - Product and expansion formulas

(2)

7,7

Multiplying the fundamental recurrence (4.1) by ¢
get the following product formula

(z) and iterating we

Theorem 6.1. IFor n a non-negative integer,

Fon(@) g p(@) = 3 [0 + k) 2(gPw))2 4 2gP@)] -

k=0

Proof. The proof is by induction on n. For n = 0, the equality is clear.
We assume the theorem for # = m — 1, and apply the recurrence

(41) g2 (@) gk, (@) = (m +9) &(g2,(@))2 + g2(@) g (@) + 29D (@) .

Using the induction hypothesis on g (x) g, () completes the proof.

The following apparently new formulas are immediate consequences of

Theorem 6.1. If A =0, fu19(@)fns(@) = z (v + B)f; (@), and for A= 2,

k=0

v =1, W, (x)w.(z) = z [(F 1) 2wi(z) + 2w (z)].

k=0

Lemma 6.1. For m a non-negative inieger,

g(.;(——l)z . V+n—m)7n—-i('1/+’n+WL__}_l_j)j:(_:—'—L’:;(!zlnl!'

Proof. TUsing the techniques of umbral caleulus with a* = (a) Ky and
noting that (v +n 4 m 41— j); = (— 1)(— v — n— m),

jz<——1) (") 00— m)no b 1 — )
(—1)™(2m)!

=((v—}—n—m)—}-(—v—n—m))’”=(—2m)mE(—2m)m_~= —
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If we solve recurrence (4.1) for (v -4~ n) mg;’ (@), multiply both sides by
(» +n -+ 1)(» 4+ n— 1) and iterate the result we obtain an expansion formula.

Theorem 6.2. Ior &k, n non-negative integers,

()

(» + n— 75)2L~+1w7‘ I, (@)

— 3 1>< ) (7 — ) s(v 1 b L= ) k= 2§) g asn (@) -

J=0

B (— )2k — 2 — 2j)! o
+23 )wil_ﬂ!7)w+n—mmw+n+k~ﬂhm%

Proof. The proof is by induction on k. For k = 1, the formula reduces
to recurrence (4.1). For k = m - 1, we use the induction hypothesis to get

(v+n—m—1)(r+n+m-+1) s[(y + 0 — M) 1 2" g,52(@) ]

=3 D)ot —m =Dl 0+ m 1),
]
o 29) 2 (0)

m=l (2m — 2 — 24!

+ A3 (=1

1 T = Da(r b0t m— ) a7,
i=0 1

Applying (4.1) in the first sum and shifting j to j — 1 in the second sum gives

Mz

LM .
_1)] ( 7 ) (’V + n—m _‘1)m—-i+1('p + n + m + 1— :'):f—{-l g;z}—,:-)nn-i-l—zj,l-(m)

<
]
<

M .
’ j ) t+n—m—1) yulvf+ant+mi41— 7)7‘+1.(/1(£—)m~1-—2i,v (2)

__;LE(_ ( Yo +n—m—1)p v+ 0+ m+1—4),,,

m 2m — 24)!
+23 (- ‘—(—Z—:?—)ﬂ’— (0 F 1 =)y (0 1m0 1 )

Shifi j to j — 1 in the second sum and combine with the first. Apply Lemma 6.1
to the third sum and combine it with the fourth to complete the proof.
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For 2=10, we have

(6.1) (v + 1 — K)arsa @ fo,()

E Lk . .
= > (—1)/ (7. )+ n—E) (v 0+ k41—, 40+ k—2§) frprosn(@) .

i=0

If v is not an integer we can divide both sides of (6.1) by (v + % — k)sy t0
get a generalization of Nielsen’s formula [2],

kK .
(—1) (7 )+ 04k —27) fupresss(@)
R ) '

‘k
(6.2) wFf, (0) =Y
j=0
In particular, for n = 0, (6.2) becomes

(Y 0 B 2) ()
wE=y ! .

=0 (v — Nt

Formulas of this type are interesting because the permit any polynomial to
be written as a sum modified Lommel polynomials.
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Abstract

In this paper the polynomials defined by

7@ = 4+ 9) xgB@) + gPuu@) + 2, gBa) =1, ¢ B@) = e+ 2

are shown Yo generalize modified forms of both the Ménage polynomials and the Lommel

polynomials. Recurrences, expansion formulas and product formulas are oblained for the
generalized polynomials.
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