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M. L. MOGRA (%)

On a class of univalent functions

whose derivatives have a positive real part (**)

1 - Introduction

Let f be analytic in a convex domain E. If j satisfies the condition
(1.1) Re (f'(2)) > 0

for all z € B, then it is wellknown (see [9], [13] and others) that f is univalent
in K. MacGregor [7]; investigated the properties, e.g., coefficient estimates,
radius of convexity etc. for functions f analytics in A= {z: |2| <1} having
power series representation

(1.2) f(z) =2+ zm Ay 2®

n=2

and satisfying (1.1) for e 4. We denote the class of such functions by R.
Analogous properties have also been obtained in [7], for analytic functions
with initial zero coefficients in (1.2) and satisfying (1.1) for z2e 4. Razrohi [3]
and Martynov [8] obtained the radius of convexity along with the other pro-
perties for the class R, of functions f(2) that arve analytic and satisfy

(1.3) Re (f'(2)) > o

(*) Indirizzo: School of Mathematical Sciences, University of Khartoum, P.O.
Box 321, Khartoum, Sudan.
(**) Ricevuto: 10-X-1979.
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for 0<a <1, ze A. Several other subclasses of R have also been studied by
Caplinger and Causey [1], Goel [4],,, MacGregor [7];, Padmanabhan [101,
Shaffer [11] and others.

In the present paper, we propose a unified approach to the study of various
subclasses of univalent functions whose derivatives have a positive real part
in 4. Thus, we introduce the class Ry(x, f) which, for different values of the
parameters «, f (0<a<1,0< f<1), not only gives rise to the classes studied
by the above mentioned workers but also gives rise to many new subeclasses
of univalent functions. Thus we have the following

Definition. Let f(z) =2 -+ > a,2" be analytic in the unit disc A. Then

n=k+1

fe R.(«, B) if the condition
(1.4) |(7'(&) — D)I2B(f'(0) — o) — (f () — 1)} | <1

is satisfied for some a, f (0<a<1,0<f<1) and for all z€ A.

It is easy to check that R(«,1) is the class R, studied by Ezrohi [3],
Martynov [8] ete.; R,(0,1) = R, R,(0,3%), R.(0,1) and R,0,1-— ), where
0<d< 1, give rise to the classes introduced and studied by MacGregor [7]; .
and Shaffer [11], while the cases (x, )= (0, (20 — 1)/26), 6 > % and («, f)
=(1— )/ +9), A+ p)/2), 0<y<l with k=1 lead respectively to the
classes studied earlier by Goel [4], Padmanabhan [10], Caplinger and Causey [1]
ete.; also &k =1 and a replacement of « by 1 — o and g by % in (1.4) gives
the class introduced by Goel [4],.

From the definition given above it is clear that R.(e, f) is a subclass of
the class of functions whose derivatives have a positive real part in 4. Also
Ri(a, B) ¢ Rile, B') for B<f'. It is easily seen that for fe Ry(«, 8), the values
f'(2) lie inside the circle in the right half plane with centre at(1-o— 2ef)/2(1— f)
and radius (1 — «)/2(1 — B). Further, it follows from Schwarz lemma that if
f € Ri(a, B), then 7'(z) = (1 4 (248 — 1) 2*p(2)) /(1 + (2B — 1) 2* p(2)) Where @ is
analytic in A and satisfies |p(z)| <1 for ze 4.

In the present paper, we determine sharp coefficient estimates, radius of
convexity ete. for functions in R,(«, f). A sufficient condition for a funetion
to be in R.(x, f) has also been obtained. For different values of the para-
meters «, f (0<a<<1,0< f<1) our results sharpen and generalize the corre-
sponding results obtained by Caplinger and Causey [1], Ezrohi [3], Goel [4],.,
Kaczmarski [6], MacGregor [7);2, Martynov [8], Padmanabhan [10], Shaf-
fer [12] etc.
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Remark. The function f(z) given by (1.2) and satisfying
(1.5) (') —1)/(f'(e) +1—20) | < B

for some a, f (0<a<1,0<f<l), zed is obtained by replacing « by
(I—pf+2a8)/1 4+ B) and B by (1 -+ B)/2 in (1.4). The class of functions sa-
tisfying (1.5) was introduced and studied in [5].

2 - Coefficient estimates

Theorem 1. If f(2)==2-4 > a,z" is in Ry, fB), then |a.|<2B(1— «)/n
n=p-+1
for n>k 41, k=1,2,.... The bounds are sharp for the functions

+ (1— 20

: 1
=l Ty

(o]

f"(

for n>k-+-1 and ze 4.
The proof of the above theorem is similar to that of Clunie [2], and hence
is omitted.

Remark. Different values of the parameters o, f and k=1 in Theorem 1
lead to the coefficient estimates obtained earlier by Caplinger and Causey [1],
Goel [4], MacGregor [7],,, Padmanabhan [10] ete.

3 - A suflicient condition for a function to be in R, («, )

Theorem 2. Let f(z) =2+ > ay2* be analytic in A. If for some «, B
n=k+1

0<a<1, 0 <<y,
(3.1) Z (1—,5)"”“71‘<(1_ ®) B,

then f(z) belongs to Ri(ax, B).

Proof. Suppose (4.1) holds for some «, f (0<ax <1, 0 < f<}) and that

f&) =2+ 3 auen,

n=p+1 -
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then for ze 4,

|7/() = 11— 12B(f'(2) — &) — (f'(x) — 1) |

< 3 wlag|ri— {281 — o) + > (1— 2B)n|a,|r}
=g+l n=pk+1

< inla"]-—Zﬁ(l—-a)—{— i (1—28)n|a,|

n=k+1 N4l

o[ 3 (1= Anlal—pl—n]=0,

n=pi+1

by (3.1). Hence it follows that |(f'(z) — 1)/{28(f'(2) — &) — (f'(&) — 1)} | < 1,
so that fe R(«, §). Hence the theorem.

Remark. Since fe Ry(«, ) implies € Ry« f) for $<f<1, the con-
dition (3.1) for 8= 1, that is, the condition

@

(3.2) > nja,|<(l—a)

n=k+1

can also be used as a sufficient condition for a function to be in R,(«, ) for
0<a<1, 1<Bf<l. The condition (3.2) with k=1, « =0 may be found
in [14] as a sufficient condition for a function to be in L.

4 - The radii of convexity for funetions in R,(«, §)
Let B denote the class of analytic functions w(z) in 4 which satisfy the

conditions (i) w(0) =0 and (i) |w(z)| <1 for ze 4. We require the following
lemmas. v

Lemma 1[12]. If we B, then for ze 4

|2]*— |o(2)|*

(4.1) |20 (2) — (@) | < —7— FE
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Lemma 2. Let weB. Then we have

2w’ (2)

1
Re {(1 F2F—1D @)1 (Zap _1)m(z))} < T Ipa Rl -1

(2oeff —1)
p(#)

2128 —1)p(e) — (2af—1)|* — |1 — p(2)|
=T =) [p()] ’

+ —2(8+af —1)} +

where p(z) = (1+ 20— 1) 0(@) /(1 + (28— D (), r=|¢| and 0<o <1,
0< B,

The proof of the above lemma follows from (4.1) immediately. So we
omit it.

Remark. The transformation
p(@) = (1 (2ef— 1) 0(2))/(1 4 (28— 1) 0(2))
maps the circle |w(z)|<» onto the circle

1— (208 —1)(28 — 1) 72 28(1 — a)r
o 1— (28 —1)22 S 1—(2f—1)2"

|(=)

Theorem 3. Let fe Rya,f). For a given p (0 <pf<1) let

(f) = {— (14 10p) + V(1 4+ 128 + 368 + 3249} [4B(4f° — 8f — 1) .

Further, let
1
V= {(0‘?/3): O<a<l, 0<ﬂ<1} ’ Iy = {(“7/3): O<°‘<I6a 0<.3<1}7

1
L= {0 B)i 75 <x<ou(f), 0<p<1}, ID=TV—([LUT}).
Then

(i) 1 is convex in |2| <y, for (a,f)elyU I},
(i) f is comvex in |z| <y, for (, f) eI},

where = [(1 — 2af) 4+ V2(1 — o) (1 — 2a) ],

n=[ = ]t
C BVl — 208 - apy)

The bounds for |z| in (i) and (i) are sharp.
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Proof. Since fe Ry, ), we have by Schwarz lemma

1+ (2af —1) 0(z)
1+ @ —Do@E

(4.2) f'(z) =

where o € B. Differentiating (4.2) logarithmically, we get

j/l

zw()

{(1+ 28— w(@))(1+ 2«f — Lo ))}

2)

"(#)

—1—28(1

(43) 14z

An application of Lemma 2 to the above equation gives

Il(z)

1'(2) 1 _ (Zef —1)
(4.4) Re {142 f’(z)} = 2p(1—a) [Re{(28 —1)p(2)+ (@) 3

2 —1)p(e) +1—2af|*— |1 —p(2)|®
(1—12){p()|

1— omﬁ
—a)’

]+

“here p(2)=(1+ (22— 1) w(2) )/(1+ (28—1)w(2)) . Setting p(z)=A + & in,
= (4 +&)2+n* where A= {1— (20— 1)( ')ﬂ {1l — (28— 1) 7} and
deno’omg the expression on the right hand side of (4.4) by S(§, n), we getb

. _1—2af 1 =

(4.5) S(§’77)”5(1-—a)+2ﬂ(1—a) [(28 —1)(4 + &) + 2af —1)(4+-§) B2]
1— (26 —1)%* 2 2 2y F-1

T W R,

where D = 28(1 — o) #/{1l — (28 — 1)2#2}. Differentiating (4.5) partially w.r.t. ,
we geb

os 1

—57; = m "7R'4T(57 7)

(4.6)

where

1— (28 —1)2r2

1—(@B—1)r2 o,

T n) =201—2ap)(4d + &) + (1 —7?)

R+2

It is easy to check that T'(, %) > 0 and so (4.6) gives that the minimum of
S(&, ) inside the dise &% - 52« D? is attained on the diameter » = 0. On
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putting # =0 in (4.5), we obtain

1—2af 1 1— (2 —1)22
ﬂﬂ~af%%ﬂ~mﬂmﬂ_1+ 1— 2

U(R) = S(£, 0) = )R

2p(1— ef —1)1%) o\, 1= (2B —1)*r

11— 2 1 — g2 ?

+

where R=A + & and A— D<R<A -+ D. Thus the absolute minimum of
U(R) in (0, oo) is attained at

1— (2af —1) %),
(4.7) R°=:[dl—-w;é—1wg h:

and the value of this minimum is

1

Bl — a)(1—r2) [\/(4“/32(1—‘ (26 —1)r2)(1— (208 —1)1%2)

4.8) UlRy) =

— (1— (Zef —1)(26 —1)72) 4 (1 — 2aB) (1 — )] .

It is easily seen that I, < A + D, but E, is not always greater than 4 — D.
In such a case when Ry¢[4d — D, 4 + D], the minimum of U(R) on the
segment [A — D, A + D] is attained at R, = 4 — D since U(R) increases
with R on this segment. The value of this minimum equals

1—2(1—2af)r + (26 —1)(2f —1)42
A+ =11+ Cep—1)7)

(4.9) UR,)=UA—D)=

It follows from what has been said that the bound 7' of convexity for the
class Rye, f) is determined either from the equation

(4.10) U(R,) =0,
or from the equation

(4.11) UR)=0.

Also, U(R,) = U(R,) for those («, )€ V for which

(4.12) R,=R,.
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Equations (4.10) and (4.11) may be reduced to the following equations

(4.13) 28 —1)2ef—1)r*—2(1— 20B)r +-1=0,

(4.14) (I—20f)1r 4 2001 — = 0.

From (4.13) and (4.14), we get

(4.15) == [(1—2af) + V(281 — o) (1 — 2e8)) ],

o

aff + V(a1 — 2af + 2f?))

:7‘2:[

I

(4.16) r

To obtain the points (x, )€ V which determine the transition from for-
mula (4.15) to formula (4.16) we eliminate # from (4.12) and (4.13) and get

(4.17) Qor, B) = 2B(4f> — 8 — 1)z + (1 + 10f)c — 1 = 0 .

For a given § (0 <f<1), the smallest positive root of the equation (4.17 )s
which is quadratie in « is given by

w(f) = — (14 108) + V(1 -+ 128 + 366> + 3282) .
R PEp—8F —1)

It is evident that (1) = 1/10 and «,(0) =1 as f tends to zero.

Now, let I' denote the arc of the curve Q(c, f) == 0 lying in the region
G = {(a, f): 1/10<x <1, 0 <p<1}cV, that is, passing through the points
(1/10,1) and (1,0). The curve I'" divides the region V into two subregions
H=7U1, and Iy where [, = {{ey B): 0<x < 1/10, 0 < f<1}, I,= {{e, B):
110<a<a(f), 0<pf<1} and Iy=V— (I UT,). The curve I’ also gives
transition from formula (4.15) to formula (4.16). It is obvious that I" has void
intersection with I3 so that in I, we have to use either formula (4.15) or
formula (4.16). But it is easily seen that it is impossible to use formula (4.16)
for all the points («, f) lying in K = {(&, f):a =0, 0 < f<1i}cIy: So, for-
mula (4.15) must be used for («, ) lying in I;. Now we consider the points
(o, f) lying in the region G = I, U I;. Since the formula (4.15) cannot be
used for the points («, f) lying in W' = {(«, B): oy(f) <x < 1, 1< B <1}, where
a(B) = 4y C I, it therefore follows that for (a, f) e I} , we have to use for-
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mula (4.16) while formula (4.15) is to be used for («, ) e} v I;. This pro-
ves (i) and (ii).

(0,1) (1.2)

0,0)
© (1,0) %

Figure 1

The above figure shows the transition curve I” and the regions [I%, I3,
and I,. The functions given by

1— (20 —1)2
1—2f—1)z’

1—2ufbz + (20§ — 1) 22
1— 28z - (26 —1)r2

f'(2) = F'(e) =

where b is determined by the relation

)_ g,

1— 208br + (208 —1)72 \/(a(l—(d aff —1)72
1—28br + (28 —1)r2 (1—(2p—1)r?)

Show that the results obtained in the theorem are sharp.

Remark. Taking different values of the parameters «, f (0<a<<1,
0 <f<1) in Theorem 3, we get the radii of convexity for functions in dif-
ferent classes obtained earlier by Caplinger and Causey [1], Ezrohi [3], Goel [4], ,,
Kacezmarski [6], MacGregor [7], ,, Martynov [8], Padmanabhan [10], Shaffer [11]
and others.

The author wishes to thank Prof. O. P. Juneja for his kind help during
the preparation of the paper.
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