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LUt MANGIAROTTI (%)

Mechanical systems and holonomic constraints (**)

1 - Introduction

In this paper we study some geometric properties of dynamics of mechanical
systems with (smooth) holonomic constraints. The framework is that of Clas-
sical Analytical Mechanics. The novelty of the treatment is the absolute
approach of the theory, i.e. independent of any frame of reference. The need
of a frame, as is well known, is required for operative physical reasons. For
this, in Section 2 we introduce the frame configuration space in order to clarify
how the traditional approach is related to our model (for example, we can
then speak of a time independent constraint with respect to the frame, ete.).

In Section 2 also the concept of mechanical system is considered. The
two other sections deal with the canonical connection and with the ecanonical
force of constraint associated to an holonomic system, respectively. ILet us
emphasize again that we are able to characterize the force of constraint
independently of any frame. This research is connected to other my works
on the subject [2],,.

2 - Mechanical systems

All manifold, bundles and tensor fields will be C*. The notation is the
standard one used in modern differential geometry. A mechanical system is a
quadruplet .#=(M,t, g, V) where M is a differentiable manifold (of dimension
m+1, m>1), t: M->R is a surjective submersion, ¢ is a (positive definite)
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Riemannian metric in Xy, = Kerdtc TM and V is a symmetric (linear) con-
nection on M compatible with both ¢ and g (i.e. such that Vdi = 0 and Vg = 0).
Here T'M denotes (as usual) the tangent space to M. The manifold M is the
event space, the projection ¢ is the absoluie time, the fibers X, of M are the
spaces of absolute symultameity and Xy — M is the bundle of the spacelike
vectors on M [2],. This model of a mechanical system generalizes the well
known one of the free-particle. In this case, M is an affine four-dimensional
space and g is an euclidean metric (in which is emboded the mass of the particle).

In the sequel we shall always use charts (V, y%) in M adapted to the absolute
time t, i.e. such that y° = ¢|V (while Greek indices run from 0 to m, Liatin indices
are used for spatial coordinates only). If I'7; are the connection parameters
for V determined by the chart (V,y%), locally Vdi=10 is equivalent to
Iy, =0, while Vg =0 is equivalent to

oy’ - oyr’ oy°

o agki + agki agf" 3_(],-5 = Fi,o:‘ + rj,oi y

(1) 20 = 9y

where g;; are the components of g and I' = ¢, ns. Note that the restric-
tions ff}]Vt are the Christoffel symbols of the Levi-Civita connections V, of
the metric ¢g|2,, where V, =2, N7V,

An holonomic constraini for the mechanical system .# is an absoluie time
submanifold N c M, i.e. a submanifold N such that also the restriction ¢|N
is a submersion (let » - 1 be the dimension of N, 1<n < m). Note that the
fibers of N are m-dimensional submanifolds of the corresponding hypersurface
2, in M. We have Xyc Xy and Kyc Ky, where Ky c TM is the absoluie
kinematic space of the mechanical system .#, that is the hypersurface of TM
characterized by di|K, = 1.

A frame of reference for the mechanical system .#, typically denoted by P,
is a section of the kinematic space K, (over M) [2],. Suppose (for the sake
of brevity) that ¥ is a complete vector field and let @, be the set of the orbits
of F. Let pp: M — @ be the canonical projection. Then there exists a unique
differentiable manifold structure on @ such that p, becomes a submersion [1].
The manifold @, (of dimension m) is the frame configuration space (of the
mechanical system .#) canonically associated to the frame F. Note that we
have the diffeomorphism

(2) (typr): M - RXQr,
from which we get the other

(3) (t, TYJFII—CBI): Ifbl *?RXTQF,
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where Tpy: TM — TQr is the tangent map of pp [1]. The diffeomorphisms (2)
and (3) induce on the absolute space 3 and K, a (frame dependent) cartesian
product structure. For example, by using charts (V, y*) on M adapied to I,
i.e. such that F|V = 3/dy°, we easily see that we get charts (p(V), %) on @,
where yiopp = . These are the usual lagrangian coordinates in configuration
space.

We give an example of how this definition of frame is to be handled. The
holonomic congtraint N c M is said to be time independent with respect to I
iff the vector field 7 on M is tangent to the submanifold N (and F|N is
complete). Then it follows that the quotient space associated to F'|N is an
n-dimensional submanifold of Q. This corresponds to the standard way by
which time independent holonomic constraints are introduced (with respect
to a fixed frame). By following this trace, the reader may pursue by himself
to see how the traditional approach is related to the our absolute one.

3 - Canonical connection of an holonomic censtraint

Let N ¢ M be an holonomic constraint for the mechanieal system .#. Let h
be the (positive definite) Riemannian metric in Xy induced by ¢ and let
vy — N be the normal bundle of the restriction X, |N (note that Xy c Zy|N).
It is casy to see that we have the canonical splitting

4) TM|N=TN®ww, II:TM|N - 1IN, I'NcTM|N,

where we have introduced the projection /7 over T'N. This canonical splitbing
is the basic fact that allows us an absolute treatment of the holonomic con-
straints (generalizing a procedure well known in the study of submanifolds
of a Riemannian manifold [3]). Working on the restriction TM [N, we shall
continue to denote by the same symbol V also the connection induced on
TMI|N by the original one V on M.

In the sequel, we shall always use charts (U, #*) on N and charts (V, y*)
on M such that

() UcV, y | U=uo* if O<a<n, ylU=0 if n-+lca<m.
Let (p73(U), ¢% ¢) and (p(V), % %) be the induced charts on Ky and Iy
respectively (herve py: Ky — N and py: K, — M are the canonical projections).

Then we have

6) Al (U)=¢ if 1<i<n, N

Py Uy=0 ifnfl<i<m.
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By using these charts, the components &;; of % are given by

(7) by =g:,1U, 1<, j<n.

The local expression of I7 is

2 ) 9 ) 2
(8) U(*Iv)=5}c—“, H(@.Iv)=h”(ymlU)5;,

where 0 <a<n, n4-1<kb<m.
The holonomic constraint N has a canonical structure of mechanical system
as the following theorem shows.

Theorem 1. Let X and Y be vector fields on N and put
(9) D, Y =1IoV, Y.
Then D is a symmetric (linear) connection on N compatible with both ¢ and h.

Proof. Indeed it is clear that (9) defines a symmetric (linear) connection

on N. Let ( 14 ) be the connection parameters for D (by using charts as

o« f
in (8)). Then from (9), by using (8), we get that (ocoﬂ) =0 and also

i |
(10) (acﬁ):Fﬁﬂ[U+7ka(g,,,]§ﬂ[U), 0<e, i<n, I<k<n,

where the sum over the indec % is from # -1 to m. From (10) it follows
that

(11) (3, o) = his( ofﬁ )=TialU, 0<a, f<n, 1<i<n.

From (1), (7) and (11) we see that also Dh =0 is satisfied.

In the sequel, we shall denote by 4" the mechanical system (X, ¢, h, D).
A foree acting on .#, typically denoted by f, is a map f: K, — 2, compatible
with the projection p,: K, — M. From the restriction flEw: Ky - Zy| N,
by using the projection II, we get a force, denoted by fy, acting on 4, i.e. a
map f: Ky — 2y compatible with the projection py: Ky — N.

A dynamics equation for .# is a second order equation on M, typically
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denoted by X, compatible with the absolute time ¢, i.e. a vector field X on K,

such that Z'pyoX = j, , where j, is the canonical injection K, c T'M [2],.
If X is a dynamies equation, there exists a unique force f such that

(12) X:Xf:§BI+f1

where & is the (restriction to K, of the) spray of the conneetion V [1],12],.
Locally we have

o 2 . e ey D
—_— o 9 ki B ni g e,
(13) &ur _877°+77 B (Lo 420597 + I 9 77)81'7':

It follows at once that there is a canonical way to restrict a dynamics equa-
tions X = X, to a dynamies equation Y for .4 by putting

(14) Y =Y,,= &y +
where £y is the spray of the connection D. The principle of d’Alembert asserts

that if & is smooth and f is force acting on .#, then the only motions dynamically
admissible for 4" are exactly the solutions of the equation Y, [2],.

4 - Canonical force of a constraint

The canonical force of the constraint N c M is the map
(15) p=Ey—Ey|Ky: Ky - TEy | Ky .
From (10) and (13) it follows easily that the loeal expression of r is
(16) = (Ii|0) §*¢°ns,

where we have put ¢°=1 and where
a 7 ij U a -
(17) vk=wlv~ h9( g x| )a?i’ n4+l<k<m,

gives a local basis for the normal fields on N (sections of vy — N). Note that
the vertical bundle Xer T'py, c T K, (over K ,) is canonically isomorphic to the
pull-back of X, over K, by means of the projection p,: Ky —> M. Hence 7
is a quadratic map r: Ky —»y compatible with the projection py: Ky — N.
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Clearly, if II: TM|N — yy is the projection over v, associated to the split-
ting (4), we have

) - .
5 [0)=0 if 0<a<n, H(ae |g)=w it n+l<k<m.

as)y

Let ITc R be an open interval and let y: 7 — N be a motion of A (we
must have toy = j, the canonical injection I c B). Let ¢ be the corresponding
motion of .#. Then we have

(19) a, = ty + 10y,

where a, and a, are the aceelerations of ¢ and y defined by means of the con-
nections V and D, respectively (clearly y: I — TN takes its values in K c TN).
Indeed, (19) follows at once from the splittings

(20) 0 =ua, + ExoC ’ V = @y + Eyoyp .
If f is a force acting on .#, the force of the (smooth) constraint N ¢ M is the map
(21) ¥r=17— fH: Ky =y,

compatible with the projection py. Here f, is the map Ky — vy (compatible
with py) that we get from the restriction f|Hy: Ky — Xy |N, by using the
projection [17.

Theorem 2. The force of constraint r; is the unique map Ky — vy, com-
patible with py, such that we have

(22) = (flEx 7)oy,
for any motion y dynamically admissible for A .

Proof. It follows at once from (19) and (21) since y is dynamically
admissible for 4" iff we have a, = fgop.

Note that the constraint forces » and 7, (as well as f) are known functions
of the coordinates (¢, ¢% ¢*) on the (absolute) kinematic space K. Clearly,
if we want to know these forces as functions of the time, we must integrate
the equation Y,;. '

It is interesting to note also that the fibers of N are auto-parallel sub-
manifolds of (2, V,) for any ¢ € R iff » is an affine morphism over N (K is an
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affine bundle over ¥ whose associated vector bundle is Xy). On the other hand,
N itself is an auto-parallel submanifold of (3, V) iff we have r = 0.
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