GIULIANELLA COLETTI and GIULIANA REGOLI (*)

Continuous selections and multivalued differential equations (**)

Introduction

The present paper deals with differential equations of the form

$$(\mathbf{E}) \qquad \qquad x' \in F(t, x) \;,$$

where F is a multivalued mapping defined in $[0,1] \times R^n$, whose values are nonempty closed convex sets of R^n .

Here we prove selection theorems from which the existence of a solution of (E) can be deduced as a direct consequence of an existence theorem for solutions of the classical differential equation x' = f(t, x) [3].

Selection theorems have been previously used for similar purposes as in [4], [1], [2].

In this paper we consider multivalued mappings under weaker hypotheses than the classical ones (continuity and lower-continuity) and we associate with them a mapping K from continuous to measurable functions. Applying a well known result by Michael [6] we prove the existence of a selection theorems also determine the properties of the selection.

1 - Let I denote the closed interval [0, 1], and let S be a subset of I such that $\mu(I-S)=0$. Let C(I) denote the space of \mathbb{R}^n -valued continuous functions with the topology of uniform convergence, let $\mathcal{M}(I)$ denote the space

^(*) Indirizzo: Dipartimento di Matematica, Università, Via Vanvitelli 1, 06100 Perugia, Italy.

^(**) Ricevuto: 29-IV-1980.

of \mathbb{R}^n -valued measurable functions with the metric of convergence in measure and let $\mathscr{L}^1(I)$ be the Banach space of \mathbb{R}^n -valued integrable functions.

We shall denote by $B[A, \varepsilon]$ the open ball of radius $\varepsilon > 0$ about the set $A \subset \mathbb{R}^n$.

In this paper we consider multivalued mappings of a topological measure space X into \mathbb{R}^n , for this purpose we shall start by stating some properties of multivalued closed measurable mappings (for every open set $A \subset \mathbb{R}^n$, the set $\{x \in X | F(x) \subset A\}$ is measurable in X), and of lower semi-continuous mappings (for every open set $A \subset \mathbb{R}^n$ the set $\{x \in X | F(x) \cap A \neq \emptyset\}$ is open in X).

- (1) Let $\{F_i\}_{i\in\mathbb{N}}$ be a family of measurable closed mappings $F_i\colon X\to P(R^n)$. Then the mappings $F\colon t\to \bigcap_{i\in\mathbb{N}} F_i(t)$ and $G\colon t\to \bigcup_{i\in\mathbb{N}} F_i(t)$ are measurable.
 - (2) Let F be a measurable closed mapping, then cl (B[F(t), ε]) is measurable.
- (3) Let F be a measurable non empty closed mapping, then there exists a countable family K of measurable functions $f: X \to \mathbb{R}^n$ such that

$$F(t) = \operatorname{cl} \{f(t), f \in K\} .$$

For the proof of properties 1 and 3 see for istance [7]. To prove property 2 it is sufficient to observe that for any closed set $A \subset \mathbb{R}^n$

$$\{x/\operatorname{cl}(B[F(x), \varepsilon]) \cap A \neq \emptyset\} = \{x/F(x) \cap \operatorname{cl}(B[A, \varepsilon]) \neq \emptyset\}$$
.

(4) If X is a metric (first countable) space and F a multivalued mapping from X into \mathbb{R}^n then F is lower semi-continuous if and only if it is lower semi-continuous for sequences i.e. if for all sequences $\{x_n\}$ which converge to x_0 in X and for all $\varepsilon > 0$ there exists an \overline{n} such that for $n > \overline{n}$ $F(x_0) \subset B[F(x_n), \varepsilon]$.

Proof. The proof of the necessity is trivial. To prove the sufficiency: assume F not lower semi-continuous: then there exist $x_0 \in X$ and $\varepsilon > 0$ such that for all $\delta > 0$ there exists x_δ such that $|x_\delta - x_0| < \delta$ and $F(x_0) \notin B[F(x_\delta), \varepsilon]$ i.e. there exists $y \in F(x_0)$: for all $\bar{y} \in F(x_\delta)$, $|y - \bar{y}| > \varepsilon$.

Thus we can choose a sequence $\{x_n\}$ with $|x_n-x_0|<1/n$ such that $F(x_0) \notin B[F(x_n), \varepsilon]$; hence a contradiction.

With any given mapping $F: I \times \mathbb{R}^n \to P(\mathbb{R}^n)$ such that for any $x \in C(I)$ F(t, x(t)) is a measurable non empty closed mapping, we can associate a mapping $K: C(I) \to P(\mathcal{M}(I))$ defined as follows

$$K\!\left(t,\,x(t)\right) = \left\{f\!\left(t,\,x(t)\right) \in \mathcal{M}(I) \, | \, f\!\left(t,\,x(t)\right) \in F\!\left(t,\,x(t)\right) \text{ a.e. in } I\right\}\,.$$

By (3) this mapping is non empty.

We shall show now that K inherits some of the properties of F.

Proposition 1. If F(t, x(t)) is closed for all $(t, x) \in S \times \mathbb{R}^n$ then, for all $x \in C(I)$ the set K(t, x(t)) is closed in the topology of $\mathcal{M}(I)$.

Proof. For any sequence $f_n(t, x(t)) \in K(t, x(t))$ which converges to f(t, x(t)) there is a subsequence converging a.e. to f(t, x(t)); since F(t, x(t)) is closed it follows $f(t, x(t)) \in F(t, x(t))$ a.e. in I. Then there is a $\psi \in K$ which coincides with f a.e. in I.

Proposition 2. From F(t, x) convex for every $t \in S$ and $x \in \mathbb{R}^n$ it follows K(t, x(t)) convex for every $x \in C(I)$.

Proof. Every linear combination of measurable functions is measurable.

Proposition 3. If F(t, x) is closed for every $(t, x) \in S \times \mathbb{R}^n$ and, for every $t \in S$, it is lower semi-continuous in x, then K is a lower semi-continuous mapping.

Proof. Let $\{x_n\}$ converge to x_0 in C(I). Given $\varepsilon > 0$ let us define the following sequences of measurable sets

$$A(n,\varepsilon) = \{t/F(t,x_0(t)) \in B[F(t,x_n(t)),\varepsilon/2]\},$$

$$C(k,\varepsilon) = \bigcap_{n\geqslant k} A(n,\varepsilon) = \{t/F(t,x_0(t)) \in B[F(t,x_n(t)),\varepsilon/2], n\geqslant k\}.$$

The sequence $\{C(k,\varepsilon)\}$ is increasing in k and $\bigcup_{k} C(k,\varepsilon) = S$. For any decreasing sequence of positive numbers $\{\varepsilon_i\}$ which converges to zero we can find a sequence $\{k_i\}$ such that for $k > k_i$, $\mu(I - C(k,\varepsilon_i)) < \varepsilon_i/2$.

For every measurable $y_0(t) \in F(t, x_0(t))$ and $n > k_i$ the mapping of $(B[y_0(t), \varepsilon_i/2] \cap F(t, x_n(t))$ is non empty, closed-valued and measurable on $C(k_i, \varepsilon_i)$, hence there exists in $C(k_i, \varepsilon_i)$ a measurable selection $\varphi_n(t)$. If $y_n(t) \in F(t, x_n(t))$ is a measurable extension of $\varphi_n(t)$ then

$$\begin{split} &\int\limits_{I}|y_0-y_n|(1+|y_0-y_n|)^{-1}\,\mathrm{d}\mu\\ =&\int\limits_{\mathcal{C}(k_i,\,\varepsilon_i)}|y_0-y_n|(1+|y_0-y_n|)^{-1}\,\mathrm{d}\mu +\int\limits_{I-\mathcal{C}(k_i,\,\varepsilon_i)}|y_0-y_n|(1+|y_0-y_n|)^{-1}\,\mathrm{d}\mu\\ &<\varepsilon_i|2\mu(I)+\mu(I-\mathcal{C}(k_i,\,\varepsilon_i))<\varepsilon_i\,. \end{split}$$

Since y_0 is an arbitrary element of $K(x_0)$ and y_n is in $K(x_n)$ it follows that

$$K(x_0) \subset B[K(x_n), \varepsilon_i]$$
 $(n \geqslant k_i)$

and then $K: C(I) \to \mathcal{M}(I)$ is lower semi-continuous.

Theorem 1. Let F be a mapping from $I \times \mathbb{R}^n$ to $P(\mathbb{R}^n)$ such that the following hold:

- (i) for every $x \in C(I)$, the mapping F(t, x(t)) is measurable;
- (ii) for every $(t, x) \in S \times \mathbb{R}^n$ the set F(t, x) is closed and convex;
- (iii) F(t, x) is lower semi-continuous in \mathbb{R}^n for every $t \in S$;
- (iv) there exists a function $\beta \in \mathcal{L}^1(I)$ such that every $y \in F(t, x)$ satisfies $|y| \leq \beta(t)$.

Then there exists a continuous function $f: C(I) \to \mathcal{L}^1(I)$ such that $f(t, x(t)) \in F(t, x(t))$ for every $x \in C(I)$.

Proof. The property (iv) implies that the mapping K associated with F takes its values in $\mathcal{L}^1(I)$. From propositions (1), (2), (3) it follows that K is lower semi-continuous, closed and convex-valued in $\mathcal{M}(I)$ and then by (iv) also in $\mathcal{L}^1(I)$.

By Michael's theorem ([6] p. 367) there exists a continuous selection for K from C(I) to $\mathcal{L}^1(I)$.

Corollary 1. If $F: I \times \mathbb{R}^n \to P(\mathbb{R}^n)$ satisfies the hypotheses of Theorem 1, then there exists $u: I \to \mathbb{R}^n$ such that u(0) = 0 and $u'(t) \in F(t, u(t))$ for almost every $t \in I$.

Proof. Let $G = \{g \in \mathcal{L}^1(I)/|g(t)| \leq \beta(t)\}$. The function f, whose existence has been proved in Theorem 1, is G-regular (according to the definition of [3]) hence there exists (see [3]) a solution of Cauchy's problem

$$x' = f(t, x), \quad x(0) = 0.$$

Since the Hausdorff distance h between two compact-valued measurable functions is a measurable function, we can give the following definition.

Definition. A sequence $\{F_n(t)\}$ of compact valued measurable functions is said to converge in measure to a compact valued measurable function F(t) if for every $\varepsilon > 0$ there exists a \overline{n} such that for $n > \overline{n}$

$$\mu\{t/h[F_n(t),F(t)]\geqslant \alpha\}\leqslant \varepsilon$$
.

Theorem 2. Let F be a function defined in $I \times R^n$ whose values are compact convex subsets of R^n such that (i) and (iv) of Theorem 1 hold and furthermore for every sequence $\{x_n\}$ converging to x_0 in C(I) the sequence $\{F(t, x_n(t))\}$ converges in measure to $F(t, x_0(t))$.

Under these hypotheses there exists a continuous function $f: C(I) \to \mathcal{L}^1(I)$ such that $f(t, x(t)) \in F(t, x(t))$ a.e. in I for every $x \in C(I)$.

Proof. First we shall prove that if F converges in measure then K is continuous from C(I) to $\mathcal{M}(I)$. This is equivalent to proving that given a sequence $\{x_n\}$ converging to x_0 in C(I) then for every $\varepsilon > 0$ there exists a \overline{n} such that for $n > \overline{n}$

$$\overline{h}[K(t,x_n(t)),K(t,x_0(t))]<\varepsilon$$
,

where \overline{h} is the Hausdorff distance in the space of closed subsets of $\mathcal{M}(I)$. To prove the above it is sufficient to show that for $n > \overline{n}$ the following hold simultaneously

(a) for all $g \in K(t, x_0(t))$ there exists $f \in K(t, x_n(t))$ such that

$$\int_{I} |f-g|(1+|f-g|)^{-1} \,\mathrm{d}\mu < \varepsilon ,$$

(b) for all $f \in K(t, x_n(t))$ there exists $g \in K(t, x_0(t))$ such that

$$\int_{I} |f-g|(1+|f-g|)^{-1} \,\mathrm{d}\mu < \varepsilon.$$

Let
$$H(n,\alpha) = \{t/h[F(t,x_0(t)), F(t,x_n(t))] \geqslant \alpha\}$$
.

For every $g \in K(t, x_0(t))$ the multivalued function $t \to \operatorname{cl}(B[g(t), \alpha])$ $\cap F(t, x_n(t))$ is defined on $I - H(n, \alpha)$ is non empty, closed valued and measurable and then there exists a measurable selection φ .

Let $f: I \times \mathbb{R}^n \to \mathbb{R}^n$ be a measurable selection for $F(t, x_n(t))$ which coincides with φ in $I - H(n, \alpha)$.

For $\alpha < \varepsilon/2$ and n such that $\mu H(n, \alpha) < \varepsilon/2$ it is

$$\smallint_{I} |f-g| \big(1+|f-g|\big)^{-1} \,\mathrm{d}\mu$$

This proves condition (a); the proof of condition (b) is similar.

By the continuity of K in $\mathcal{M}(I)$, hypothesis (iv) and Michael's theorem our proof is complete.

Corollary 2. If F verifies the hypothesis of Theorem 2 then there exists a function $u: I \to \mathbb{R}^n$ such that u(0) = 0 and $u' \in F(t, u(t))$ for almost every $t \in I$.

This is proved analogously to Corollary 1.

References

- [1] H. A. Antosiewicz and A. Cellina, Continuous selections and differential relations, J. Differential Equations 19 (1975), 386-398.
- [2] A. CELLINA, A selection theorem, Rend. Sem. Mat. Univ. Padova 55 (1976), 143-149.
- [3] G. Coletti and G. Regoli, Criteri di esistenza e di limitatezza di soluzioni di equazioni differenziali non lineari, Rend. Mat. (to appear).
- [4] H. Hermes, On continuous and measurable selections and the existence of solutions of generalized differential equations, Proc. Amer. Math. Soc. 29 (1971), 535-542.
- [5] K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Polon. Sci. 6 (1965), 397-403.
- [6] E. MICHAEL, Continuous selections, Ann. of Math. 63 (1956), 361-382.
- [7] R. T. ROCKAFELLAR, Measurable dependence of convex sets and functions on parameters, J. Math. Anal. Appl. 28 (1969), 4-25.

Summary

In questo lavoro si considera il problema $x' \in F(t, x)$, dove F è una funzione multivoca in $[0, 1] \times R^n$ a valori in $P(R^n)$, sulla quale si fanno ipotesi più deboli di quelle classiche (continuità e semicontinuità). Si dànno teoremi di esistenza di selettori attraverso i quali si giunge a stabilire l'esistenza di soluzioni del problema suddetto.

* * *