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MARCO M ODUGNO (*)

On the structure of classical dynamies (**)

Introduction

In the last years a new interest in an axiomatic and geometric approach
to mechanics has been taken by several authors.

This paper gives a contribution in this direction, developing the pomt of
view of connections, which seems to have some new aspects.

In particular the present approach to classical mechanics turns out to be
very close to special and general relativity.

List of symbols

7: TM — M is the canonical projection,

v=Tn: T*° M —>TM,

s: T*M — T? M is the symmetrical endomorphism,

" denotes the lift with respect to the tangent functor,

if f: R => M, then df = Tf;: R~ TM,

if f: M -~R, then f=an%o If: TM —~R,

T, and d; denote the i-th partial tangent map and differential.

1 - Absolute kinematics

1.1 — The classical kinematical framework. Tirst we introduce the general
kinematical framework for the classical mechanics.

(*) Indirizzo: Istituto di Matematica Applicata, Facolts di Ingegneria, Via 8. Mar-
ta 3, 50100 Firenze, Italy.
(**) Lavoro eseguito nell’ambito del G.N.F.M. (C.N.R.). — Ricevuto: 10-VI-1980,
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Definition. A time bundle is a 3-plet 5 = (¥,¢,T), where B and T
are affine spaces, with dimension 4 and 1, respectively, and ¢: B — T is an
affine surjective map.

Il and T are called the cvent space and the time.

We denote by Z and T the vector spaces of I/ and T, respectively, and by
j the ineclusion § = (t,id,): ¥ <> T X E.

7 is an affine frivial bundle, but not a canonical product. The fibers
8, =1t"Yz), for 7€ T, are parallel affine subspaces of E, with dimension 3,
whose vector space is .S = Dt~1(0). A vector uw e ¥ is space-like or time-like,
according as wu, = Dt(%)2 0.

The sign " will denote the vertical quantities and operations with respect
to the bundle #.

Definition. A space-like conformal metric is a euclidean eonformal
metric {g} on S. A time orientation is an orientation § on T.
A time-like vector w € B is future or past-oriented, according as u°Z 0.

Definition. A dassical kinematical framework is a 3-plet ckf = (1, {g}, 0)
as above.

Henceforth we assume such a e¢kf to be given.

A Potncare’s map is an automorphism G: F — F of ckf and its derivative
DG: E — E is the associated Galilei’s map.

The choice of a space-like measure unity is the choice of a metric
g: 8® 8 — R, among {g}. The choice of a time-like measure unity is the choice
of a metric g: T ® T — R.

Henceforth we assume such unities to be choosen.

We denote by §: S*® 8* — R the contravariant metric tensor fmd we
put % = g(%), & = §(u) and w-v = g(@, &) = §(u,v). We denote by o S® 8
® S "> R the space-like metric volume form, by *: U r—»z,,o the Hodge iso-
morphism and by (u,v) > uXv =1, vg the wedge product (with respect to
a choosen orientation of S). '

gc} and 0 characterize a unitary future oriented vector we T, hence they
determine an isomorphism T — R. Henceforth we. will identify T and R.

We get a eanomml volume form on &, namely 0 —*Dt/\o’ where o is
any extension of o ‘

We denote by U the affine subspace U = Dt-1(1) of E, whose vector
space is S.

A special chart is a chart x = (@%) = (2° 29): Vc F - RXR?, such that
Daz® = D¢. Henceforth z will denote a special chart.

As we are concerned with the affine space F, we could utilize only the
« free » vector space E, for the most purposes. But, in order to get a treatment
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easily extendible to the constrained mechanics, we can use equivalently the
« applied » vector space I'll = I x B. We shall denote by 4 and % (or % and )
the « free » and « applied » form of a tensor, related by the affine structure of .

We shall be concerned with the following spaces:

the phase-space TH = EX S, the cophasc-space T#B = I x 8%,
" the wunitary space TH =BxU,; i) = ((¢,¥Dt)|ec B, r€R),
T°E=Ex8x8X8, TT*E=BXx8*X8x 8%, TTE=EXUXEXS,
" TTE=EXUxS8xS, IE=EXUXUXS.

We have the natural inclusions

TE, TE<TE, TB, TTE, TTE, 1B TE; TT*E TTE;
7*H <> T*E and the natural projection T*E — T*E, denoted by u > .
Moreover, let us remark that TZ is the jet space of sections of the bundle 7.

1.2 — Kinematical absoluic structures. We shall be concerned with some
structures related to the bundle #.

The space-like metrical structure ‘of TE is characterized by each one of
the following quantities.

Definition. The space-like
metric tensor is  g: TE 7 ® TE >R, u®v uo,

“ metyic map is . g: TE > T*RB, TS T
metric function 18 g: TE >R, wrsLuou,
‘metric form is dg: T*F - R, : (e, uy v, W) > u-v .

" Proposition. One has
g = g, o' @ dat, #00 = g%’ = 00y,
g=Lgsdii, dg=g,sde, o= % (det(g;)) da"A dwipdxz dxe.
‘The metrical map determines analogous quantities on i’*L‘ which. will be
denoted by *. In particular, it associates the metuc form with a canonical
f01m, namely, with the
space-like Liouville’s form T TT*E R, (e, 4,9, w) > {u, 7).

Let B — V be an affine bundle, whose vector bundle is B — V. A pseudo-
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connection (a connection) is a map C: TB — B, which is an affine morphism
over BX ,I'V — V and whose fiber derivatives on each fiber are 1 (and more-
over which is a linear morphism over B — V).

The affine connection I': T°E — TH, (e, u,v,w) > (¢, w), induces, by
restriction, the following maps.

Definition. The space-like connection is I': T:E - TE, (ey u, v, w)
> (€, w); the inertial céonnection is I': TTE — TH, (e, u, vy W) +> (€, W),

If w,v: E—TE and a,b: E — TE are vector fields, then the covariant
derivative is Vo = I'oTvou: B — TE and the space-like covariant derivative
is Vb = FoTboa: B — TE, which can be in a natural way extended to
tensors.

Proposition. One has ﬁq = 0. Moreover, one has [z = 0,

o T i Sp A
Tiol =o'+ I} 2" £*,

Gol = wi 4 I Frdr 4 I grdo 4 T & 4 I &,
Vi e = $(Cn iz, -+ 0.9 — 00z Vi, 087t Vi os = GHY/ I

where y, ., =¢usl%;. The metrical map determines a connection I* on T:“E

Let us remark that we could consider the further map —7: 7T2F — TE,
(€, 1, v, W) > (&, w'w — w'u), which reduces to I" on TTE.

Let V' be a 2n manifold. A symplectic form is an exterior 2-form s, such
that ds =0 and s* is a volume form.

Let V be a 2n 41 manifold (and let 6 be a closed 1-form). A contact
(pseudo-contact) form is an exterior 2-form ¢, such that de =0 (Ade = 0)
and yAce" (0Ac¢"), where dy = ¢, is a volume form.

We define the map »: T*E - TE, (e, U, U, W) > (e, ug® — 1), whose resfric-
tion to TTE is denoted by ».

Definition. The space-like form is p = go(I'A%): TZEX;E T°E -> R,
the inertial form is y = go(I'A»): TTE X, TTE — R; and moreover ¢ =g
o(I'N(x—m)): T2Exy,T*F — R.

Proposition. v is the space-like symplectic form induced by the me-
tric, namely p = (\id\l’vg.
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One has dy = 0 and AAPAPAD is a volume form (connected wWith o).
We get

17)(8, w; v, Ww; &by =w-a—"bv,
e, u; v, w; a,b) =w-(@—u)—b-(v—mu),
e, u; v, w; @, b) = w-(a — a®u) —b-(v —v°u),
¥ = g,;(d&" + I @t dar) A do’ = g,y daipda -+ 8, g8 dai A\ da,
@ = go(det + I ardor) A de? 4+ g ai(dss 4 I, a0 dav)o (n2 — 1)
= gijaiiAﬁwf + aig,,,;.a':” dai pdor + (g, da - 10, gu @k Ao (2 — mt)
Y= g,;(d&t 4 Iy @ dat + I dar + TEgrda® + I da) A (da? — 27 dar®)
= g5 ABNAD -+ g & AN\ A2 + (0,95 2" + y; 00) o' N\ d?
+ (30: g BT+ 0o grs®* + ¥, 00) A A,
PAPAY = 31 det(g,;) Aot A da2 A da? A dat A dag2 A da?,
AAPAPAY = 3! det(g,;) dad A dwt A dz2 A Awd A AR A2z A das.
Thgvmem;ic map associates with 17) the canonical space-like symplectic
form di of T*E.
Let us remark that we could consider the further map y = go(TI1Av):
T*EX ,,T*E — R, which reduces to " on T7EX;, TTE.

Let X: TE - TTE (or X: TH — T*E) be a section. Then the following
conditions are equivalent:
(a) if ¢: T > TE (or ¢: R — TH) is a section (a map such that toe is
constant), such that Xoe = de¢, then ¢ = d(moc),
(b) soX = X.

Definition. The space-like equation is X:TE - i’2E, (e, u) — (e, u, u, 0),
the inertial equation is X: TE > TTE, (e, u) > (e, u,u, 0).

Proposition. One has

X = didw, — It arirds,, X = 0w+ & 0w, — ([ arar 4+ 2T, & + Ii) o,
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Moreover, X and X are the sections characterized, respectively, by each
one of the following conditions:

(@) soX =X, IoX=0, (@) soX =X, JoX =0,
(b) iyyp=—dg, (¢) fpdt=1, d p=0.
(0) i}(pxo’

1.3 — The one-body absolute kinematics.

Definition. A motion is a section M: T — B and its world-line is
M(T) = K.
The velocity of M is AM =TM,=(M,DM): T — TE. :
The acceleration of M is VAM = ["od>M = (M, D2M): T - TE.
M is characterized by its +world-line,” which is a one dimensional sub-
manifold of I, meeting each S, just in one point.

Proposition. One has
dM = BmOoM -+ DM"@@oJﬁ) ,“ )
VaM = (D‘-’M‘i + ]’,ﬁkoMDM"bM’ﬂ + 2L o MDM* - I} o M)(Dx,0 M) .
A motion M .is inertial if it is an affine mayp, ie. if VAWM = 0.
If 0: T%E is a motion, then 60 will denote the map
00: B TE,  er(e—0(Ue)).
Y4 — The absolute jkinematiés of @ continuum.

Definition. A continuum of world-lines is a family & = (T,),.p of
world lines, such that ' :
(a) B=UT,;
qeP
(b) if ¢ ¢, then T,N T, = 0;
() there exists an atlas A of C° cvhzirt,_sw = (2, #'): VC B - RXR?
adapted to each world-line of & in V. ’

The previous definition is easily extendible to local continua of world-lines.
A special chart determines (at least locally)-a continuum of world-lines.
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Henceforth we assume a continuum of world-lines to be given.
We consider the map p: # — P, e — (the unique ¢ € P, such that e T,).

Proposition. There is a unique C® structure on P, such that p is C®.
More precisely, it is induced by the maps (z%): V — R?, associated with the
atlas A, which factorize through p.

Moreover, the atlas A can be reduced to special charts.

Henceforth, when we are concerned with &, will be a special chart,
adapted to &, and we shall denote the chart induced on P, by the same nota-
tion (2%): P — R3.

Definition. The motion of & is the map P: TXP — E, (1, q) — (the

unique ee 8; N T,), or the map P= Po(idpXp): TXE — B, or the family
Of nla,ps ﬁ(r,g) e .Zc)ﬂsa: S(r — Sr.

P . 9, .
Proposition. Each one of P, P ana P characterizes &. Moreover,
one has o

tO_P == 7[}1’ pOP — 7[2,
toP=al, Poj=—idy, Po(idyxP)= Polidyxa?),
Pooolen=Pogn, LPro=ids,,
Po’ = _i)(g’r)O,Pr 3 IJTOP-[ = idl) 3 _P-[O_pr — idsr .

Definition. We define the following quantities relative to £.

The velocity is P=daloj: B TE,

the acceleration  is P =dPoj: E » I'E,

the strain is £5 == Sym VP: B — i’*E@ TE ,
the spin s wg=antisymVP: B - T*EQ TH,

the angular velocity is.  Qup=1% 0wy, B TH.

Proposition. P is a complete field, which characterizes 2. Moreover,
one has

T, Boj: TE -~ TE, (¢, u) > (e, Ugle));  T:Poj: T°B — TR,
(e, 1, v, w) > (e, 'Zzg,(e), 59.(0), 1 p(€) — u°]31~3(e)(59,(e))

— 0 DP(e)(up(e)) — 17"7)013:(6)) ,
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where ’1\29(6) =1 — uoP(e);

P=V;P; sp=1Lzg; P=20am;
P=Triodw; VP=DIde'®@w,; &5 =0,0;d'® do’;
W g = (¥;, 0: — Vi,0;) W@ dw?; Ry = '%"(det (gi:‘))%sk”%, 0:0%;; .
Definition. & is affine it V2P = 0. & is rigid if V*P = 0 and ¢,= 0.
P is translating it VP = 0. 2 is inertial if VP = 0.
Proposition. The following conditions are equivalent:

(a) (a') VP is factorizable through B — T,
(b) (b') D,P is factorizable through TXE — TxT,
(c) the map lo’m,n: S8t — 8y is affine, i.e.

Bo(e') = Pole) + DPyn(e' —¢),
(d) the map P]s, 8z — U is affine, i.e.
P(e') = P(e) + ea(t)(e'— €) + Qu(r) X (¢'—¢) .
The following conditions are equivalent:

(a) V:P=0 and g5 =0,
(a') VP is factorizable through F — T and it is unitary,
(b) 13103 =0 and lv)zf’ is unitary,
(b") D,P is factorizable through TX F — TxXT and it is unitary,
(c) the map Py n: 8r — S, is rigid, ie.
Nlos’(a,r)(@') *loJ(o,n(e)]f = e'—e],
(d) the map P[Sr: S: — U is affine and P(e’) = P(e) + Q4() X (¢'—¢) .

.The following conditions are equivalent:
(a) VP=0, (a') P is factorizable through E — T,
(b) D.P =ids,
(¢) the map 10)(5’1): S: — S5 is a translation, i.e.
Piofe’) = Pnle) + (¢ —¢)
(d) the map PIST: S: — U is constant,
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The following conditions are equivalent:
(a) VP =0,

(b) }313 =id, and D, P is constant,

(e) the map P: TXE - E is affine, i.c.

=3

P(r,e)=¢e-+ Pz —1(e), with Pe U,

(d) the map P: E - U is constant.

2 - Observed kinematics
2.1 — The position space. We get useful representations of P.

The diffeomorphism P: Tx P — F induces the diffeomorphisms P,: P — 8-,
whose inverse ones are p,: S: — P and which are related together by 103(715).
Hence, in this way, we get a time depending representation of P.

Moreover, & determines the equivalence relation in B

¢’ ~e <> ple) =ple) < ¢ = f)(t(e’), e) .

The equivalence classes are just the world-lines of #7; each one of these meets

each fiber 8; in one point and its representatives at the times 7 and ¢ are
<

related by P o).

Definition. The position space is the quotient space E,,.

Henceforth we shall make the natural identification P = E,;, which
unifies the time dependent representations of P by a fime independent one.
Analogous statements can be obtained for 7P and 7°P, by taking into

account the diffeomorphisms

T,P: TXTP > TE and T:P: TX TP T8,
and the equivalence relations in TE and in T°E

a'~a <> Tple)=Tpla) < o' = Tgf’(t(a’), a),

' ~a <= Tpa’) = Tpla) <> o/ = i’;jlo’(t(a’), a) .
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In this way we get a time dependent fepresentation of TP and T°P and
an identification TP = 1TF,; and T°P = I"E 4.
Moreover the diffeomorphisms
AP = TP;: TXTP > TE and  d*P =TdP;: TXTP — T°E
give further useful time dependent representations of 7P and T2P.
Proposition. One as
ple)=1e,  Tple,u)=Ile ugle)l,
T*p(e, u, v, w)
= [, Tgp(6), T p(e), 55(6) — w0 DP(e) (B 5(e) — 0 DPoe) (ule)) — u“v"f’(e)] ,
P(t(e), [¢]) = e, T, P(ie), [e, ul) = (e, u),
T2P(He), e, u, v, w]) = (€, u, v, W),
dP(t(e), [e, w]) = (e, u + P(e)) ,
azP(t(e), e, u, v, w]) = (¢, u + Pe), v + Ple), w + DP(e)(w + ) + P(e)) .

Henceforth we shall be concerned with the observed phase-space TX TP,
the observed cophase-space Tx T*P and moreover with the spaces TXT:P
and T'X TT*P. r r

It f: TXA — B is a map, we shall denote by f the lift f = (ids, f):
TxA -~ TXxB.

Moreover, we shall denote by the sign
respect to the bundle TX P - P.

~

the vertical derivatives with

2.2 — Observed Lkinematical structures. The time dependent representation
of P induces interesting structures on it.

Definition. The observed time-dependent
metric tensor I8  gp =go(T,PX T, P): TXTPX TP —+ R,
metric map is  gp =T*pogoT, P: TXTP — T*P,
metric function is gy =goTy P: TXTP - R,
metric form  is  gp=goTiP: TXT*P -~ R.
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Proposition. One has
go(te), [e, uly [e, v)) = w-v,  gu(ile), le, @) = [e, 1],
9p(t(e); [e, ul) = Su-u,  gu(ile), [e, u, v, w]) = w0,
Jp = gi; do* @ da/, Ti00p = gi; 2,
Jop = L gua'%, 9o = 4,95 = gu& Ao,

The metrical map determines analogous quantities on T'XT#P.

Definition. The observed time-dependent

space-like connection is ]v“g = TpoloT:P: TXT:P — TP,
inertial pseudo-connection is Iy =Tpolod2P: TXx TP — TP.

The Coriolis map is Cp = Tpo%’ﬁngP : TXTP— TP, the dragging map
is Dy = TpoPoP: TXP  TP.
U IE w0 Tx P TP are vector fields, we define the covariant derivative
Vg v = LgoTvou: TXTP— TP, which can be naturally extended to tensors.

Proposition. One has

f’g(t(c')y le, u, v, w]) = [e, w],
Tp(t(e), [e, u, v, w]) = (e, w + DP(e)(u -+ v) + P(o)]
hence
rgzrg—i— ©g+ /O_J}OS'—%'DQ;,
Gioly =& o I arar,  dioll, = & + I arat + 2T @ + T af.

Moreover, one has V, 95 = 0.

The metrical map induces analogous quantities on T*P and TT*P.

We put 7, = Tpoyod2P: TX TP — TP getting v, = 2 —m, ie. vy(t(e),
[e, w, v, w]) = [e, v —ul.
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Definition. The observed time-dependent

space-like form is P p=po(T:PX T2 P): TX T*PX ., T°P — R,
inertial form is g, =po(A2P X dA2P): TXT°PX,, TP - R,

Moreover, we define ¢z = @o(T:PXT:P): TXT*PX,,T*P - R.

Proposition. One has
wa(t(e), [e, w5 v, w; a,b]) = w-a—b-v,
®a(te), [ u; v, w; a,0]) =w- (@ —u)—b-(v—u),
1}Jg,(t(c), le, w5 v,w; a,b]) = w- (@ —u) —b-(v—u) 4 ex(e)(u, ¢ —v)
+ 28 4(e)x v a4 Pe) (a— 1),
Yo = go0(LpA2) = gy A& A dD? + Bigneth dui A da,
9o = gpo (I'p/ (& — 7)) = gi; A&\ da? + 8, g 8" d* A\ do?
4 (daF -y, 5B 0 d2?) (0 — 7))
1/').@ = ggo(rg’/\g’g) = g, dg'\da 4 (C; 92" -+ ’}’i,oi) dwiN\da? + g, @t dEio(n® — ')
+ (%‘az‘ghkdjhi&k + Gogadt -+ ’)’i,‘on) daio{n®—a').
Definition. The observed time-dependent
space-like equation is Xg, = TpoXoT,P: TXTP — T*P,
inertial equation is X, = T*poXodP: TXTP — T°P.

The metrical map determines analogous quantities on T'X T*P.

Proposition. One has
X (t(e), [e, wl) = [e, uy u, 01, X (t(e), e, ul) = [e, u, u, — 2 DP(e)(u)— P(e)l,
X, = @i 0w, — I, &34 04, Xy = @ 0w, — (I @b + oI5 @t - Tig) o, .
Moreover, ;vﬁg, andX » ave the sections characterized, respectively, by each
one of the following conditions:
(@) soX,=X,, IpX,=0, (@) soX,=X,, IpoX,=0,
(b) ¥y =—dgs, (b') iippp =10,
(€) trpppr=20.

Hence P has a timé-dependent affine structure, characterized by f’g,, and
a euclidean structure, characterized by gsz.
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If 2 is affine, then P is an affine space, whose vector space is P = (T'X 8),5 ,
with respect to the equivalence relation

(')~ (1,u) <= u'= DI%(T,’,)(N) .

In this case, I '» results into the (fime independent) affine connection of P.
It & is rigid, then ¢, is time independent and P turn out to be an affine

euclidean space.
If 2 is translating, then we get P= 8 and O, = 0.
If 2 is inertial, then we get 'y = Iy, ¢y = ¥y, Xp= Xz.

2.3 — The representation of B. We can take the continuum of world lines &
as an observer, which splits F into space and time, associating with the abso-
lute quantities the physically observed ones. The pair (%, ) is a frame of
reference, which, moreover, gives the numerical representation of the observed

quantities.

The representation of ¥ is given by the inverse diffeomorphisms
P: TxP - E and (t,p): B - TxP.

Hence & determines the splitting of the absolute bundle F — T, by means
of the fiber P, and it determines the bundle E -+ P, whose absolute fiber is T.
Analogous representations hold for the tangent spaces.

We define the following spaces

TpB = (0,7P(€)) ,ep,,er > TE,  THB = ((e,v) € T*E|{v, P(e)) = 0) < T*E,
which give the useful representations
TE=T,EQTE, (e, u)= (e, uP(e) + uzle)),
T*E = T*EQ® T;,E , (6,v) = (e, (v, P(e)> Dt + 59,(6)) .
2.4 — Observed kinematics. Let M be a motion.

Definition. The observed motion is M, = poM: T — P. The wvelocity
and the acceleration of M, are

. T . T
dMy,: T — TP and VpldMy=1pod*My: T — TP,
Proposition. One has

r - r
My = M, AMy =AMy — PoM 4z = DMi(0x,0 M ),

- T s T T 7 T
Vg dM =V AM — 2C0d M, — D yo My=(D2Mi- I 0 My D MWD M¥) (9,0 M ),
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,.
where we have represented the values of dM, and of V,dM, in TP, by
means of their absolute representatives at each time.

Hence the observed quantities determine the absolute ones, taking into
account the kinematical structures of P.

3 - Absolute dynamics

3.1 — Dynamical metric.

Definition. A mass is a conformal transformation of {g}, characterized
by a number m € R. We call dynamical the new metric mg and all the new
quantities induced by the transformation g +— mg.

Henceforth we assume such an m to be given.

In this way, we get

g, VY=my, ¥Y=my, D=mp, I, z=my -

Z

Henceforth (except when it is not explicitly pointed out) we shall be con-
cerned with such dynamical gquantities.

3.2 — Forces.

Definition. A force is a morphism over E, F': TE — T*E, such that
(F(e,u), uy=0. A force I is characterized by the morphisms over E,
¥: 7B T*E and F: TE - TE or by the sections obtained, by lift, from
7, F and ﬁ, which will be denoted by the same notations.

Proposition. One has
(Fe, u), v) = Q?(e, w), v — Uy = g(l?’(e, %)y v—0°u) ,

~ - x> 1
P =—Fgde+ F,det, F=DF,de!y, F=Ti0ux,, Fi= q;g”lf’f .

A force F is event, or fime, or velocity dependent, respectively, if it is factor-
izable through ©TFE — E, or TE -~ T, or TE - TU.

A force F' is space-like closed if dF = 0 and it is space-like ewact if there
is a function f: B - R, such that = df. We get df=F=df < f'=f
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-+ @of, where ¢: T — R. Moreover, F is space-like closed if and only if it
is space-like exact. If I is time dependent, then it is space-like exact and
fis,* 8z = R is an affine function.

The following conditions are equivalent: \

(a) AAAF = 0,
(b) Fis event-dependent and space-like closed.

There are not closed forces, namely, if dFf = 0, then F = 0.

Let us consider an interesting example of force.

The force of Lorentz generated by the classical electromagnetic field (see [8])
F: Il - N\*E is F(u)=1,F.

3.3 — Absolute dynamical structures. A force modifies the inertial strue-
tures of T'H.

Definition. A dynamical connection is a connection I': TTEH -~ TR,
which reduces to the inertial connection on T7.

A dynamical form is an exterior 2-form w: TTExi, » TTE > R, which dif-
fers from the inertial form for a pull-back 2-form and which reduces to it
on TTEX,,TTE.

A dynamical equation is a section X: TE — TTH, such that soX = X.

Proposition. The maps
~ r . ~ F .
FeoI'sl—AQF, ¥ =Y — &AL,
v F ~ .
FisX=X4F, ' ¥ = Go(I'AY),

¥ X, where X is the section X: TE — TTE characterized by iydt=1
and iy¥= 0; X > I', where [ is the dynamical connection such that I'cX==0,
induce bijections among forces, dynamical connections, forms and equations,
they relate the null foree with the inertial quantities and their compositions
commute.
More precisely, one has
r

I'(e, u, v, w) = (e, w ——?)“1%(6, u))

F
Y(e, u; v, w; @y b) = mw- (@ — a®u) — mb- (v — v°u) — (e, u)y v’a — a’vy,

Fa ~
X(e, u) = (¢, uy uy F(e, u)) .
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F F F
The coordinate expressions of I, ¥ and X are obtained from those of I

¥ and X replacing g,; with @, v, 5 With I, 5 and y;q With Vioo— L.
We get dt/\dl;fz dtpay and dt/\f;f/\ ‘IF//\ W INININZ
Definition (Absolute Newton’s law of motion). A dynamical system is a
pair @ = (G, F). A dynamical solution of & is a motion (ab least defined
locally on T) M: T — E, such that édM = 0.
Theorem. Let 2 be a dynamical system and let M be a motion. The
jollowing conditions are equivalent:
(a) de = ]F’odﬁM = 0,
(b) VaM = ['od: M = FodlM,
(e) <§/odﬂI, aziy =,
(d) j%odM = d*H,
(e) DM + I'i, o M DM*DM* + 2150 MDM* - I o M = Fiod M.

4 - QObserved dynamics

4.1 — Observed dynamical metric. We call dynamical the new observed
metric and the new observed quantities induced by the transformation

G > MY
In this way, we get

_ i . . .
Gp=mggs, G‘@E;’“‘LGQ, Vpy=myy, Ye=myPy, DPyp=mps.

4.2 — Observed forces. Let I be a force.
Definition. The observed force is the morphism over P
F, = T*pofiodP: TXTP — T*P, or F,=TpoFedP: TXTP —TP.

The observed power is the function

Foym: TXTP - R, (t(e), [e, u]) > (gv’(e, u -+ Ple)), ud .
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Moreover, let M be a motion and let 7, T, then the observed work, along M

T
and with starting point =,, is the function L: T — R, vt [, 4 I pod M.

Definition. F is positional (with respect to &) if it is factorizable
through TX TP — P, by fz: P — T*P.

Let F be positional; it is conservative if there is f,: P — R, such that
fo= afy-

We get Fy,= F, do', Ty, = Fyd% where Fg, = FodP.

Let us examine the previous example of force.

We can write & = dtAey — * H, where ¢, = iz and H = — = . Then
we get F(e, u) = — {ezle), updt + &5 + (WX H)p, where (X H)p is the exten-
sion of ux H induced by 2, and F,(1(0), [e, u]) =¢,(t(e), [e])+u X o Hp(He), [€]),
Fop(tle), [e, u]) = <ep(tle), [€]), up, where we have made frivial abuse of nota-
tions.

4.3 — Observed dynamical structures. Let I be a force.

Definition. The observed dynamical

ra

»
pseudo-connection 1is "y =TpoloT;P: TX TP — TP,

) F

form is ‘I/ = Po(A2P x A*P): TX T*PX ,p T*P — R,

F

equation is X,= Tﬁ)oX odP: TXx TP — T*P.

Proposition. The observed dynamical quantities satisfy relations ana-
logous to those satisfied by the inertial ones. Moreover the expressions of the
dynamlml quantities can be obtained from those of the inertial ones, replacing

P(e) by (e) ——If (e, u) and y;o0 DY Vigo— Fiz-
Theorem. Let @ be a dynamical system and let M be a motion. The

following conditions are equivalent:

(o) M is a dy Jncmmcal solution of &

(a) T dMg, ]’g,odd[g,__ 0,

(b) Vg dMg, = [pod* M, = Fg,o({My,,

(c) YJ, dMg., = rgodzmg = (F, —Cyp— D‘g,)og{.Mg,

(d) <1/)g’°dMﬂ’ doﬂ[.@> =0,

(e) Xg,odMJ, _—d My,
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cmd, if P is rigid, the condz’tions analogous tfo (a), ..., (e), obiained replacing

]ﬁ‘

dﬂ[g, with dM g, = Ggodﬂl 7y and moreover the condition (Lagrange equations),
for any special chart y: B - R X RS,

(f) D2y, Gy)odﬂfg, + (0¥, @G )odMg, = I’,g,odM
r T
Proposition. Let M a solution of &. One has D(GodMy)=F 00 M ,.

Corollary. Let & be inertial and let F be conservative. Then the function

Hy=Gy—f: TXTP > R satisfies XJ, Hg, =0, ie. D(HjodMg, =0, for
each dynamical solution M.

5 - Remark on the n-body ahsolute and observed kinematics

In order to study n not interacting particles, we could repeat » times the
model induced by the classical event framework for one particle. However
we can introduce the pull-back bundle ™ = (E™, ¢», T), of the bundle ¥ — T
by the diagonal map T <> T,

Namely E®™ is the set of the n-plets (e, ..., €,) € B*, such that #(e;) = ...
= t(e,). Then dim E® = 3y 4 1,

The canonical i-th projection z,: B™ —» I maps each n-event into the
event space of the 4-th particle.

The bundle 5 and its structures induce analogous structures on the bundle
1™, which will be denoted by the sign « ™y,

We leave to the reader the extension to this case of all the proceeding
results.

6 - The constrained mechanies

6.1 - Definition. A configuration time bundle is a 0 (not necessarily
affine) subbundle of 5™ of dimension 141, u = (C,t, T). Henceforth we
assume such a g to be given.

A constraint is a (local) function f: H™ —» R, such that fio = 0 and (df),, # 0.

In the following #: B®™ — RXR**1 will be a chart adapted to €. It can
be choosen to be orthogonal, (at least) at one point ¢ e C, i.e such that oz, TRPRN
0@, are orthogonal to C in e, with respect to the space-like metric of E™.

An observer of I is adapted to C if its world-lines, which meet at on point,
belong to it. Adapted charts induce adapted observers only.

We denote by ¢: C < E™ the canonical injection.

We define the following spaces and structures along the line adopted for
the free mechanics.
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Definition.

The phase space is TC ={10) = TC N ?j’E(n),
the wnitary space is TC =i-1(1)= TC N TE™.

The bilinear form gcsg"o(i’c, Te): l’0>< 7C — R is the space-like Rie-
mannian metric.

The space-like metric gn-induces the parallel and orthogonal projections
a": T8, — 70 and z*: TE), - (TO)*

6.2 — Proposition. The map j’csn”ofol’ﬁc: Te2¢ — TC is a space-
like connection, namely the space-like Riemannian connection.

The map = Lo o T2e: T2C — (fZ"C)i is a morphism over (, which ean be
factorized through the canonical projection 720 - T0C X T0C, by a bilinear
map TCxcl’C — (TC)*. Hence, its restriction to the symmetnc subspaee of
T2C can be factorized through the canonical plojecmon sym 720 - 10, by
a quadratic map N: 7€ — (TC)*-. The map I =a"oleT%: TTC —~T0C is
a, connection.

The map = oo T2e: TTC — (TC) is a morphism over O, which can be
factorized through the canonical projection T7C - TC0x,TC, by a map
6%, T¢ — (T'C)*. Hence, its restriction to the symmetric subspace of Tre
can be factorized through the canoniecal projection sym T7¢ — 170, by an
affine quadratic map N: TC¢ - (TO)*.

Let x be an orthogonal chart. Then we get the following expressions
(where the orthogonality holds)

giolly = &' 4 I, & 3F, ZroN = I @3,
giol’, =& + I grar + It o+ + Iy a0 4 1, 3%,
vro N = ] qhagk r ok r
groN = I ara* + 2Ly, &+ Iy, ,

with 1<%, b, k<1 and 1+ 1<r<3n.

The previous etpressmns show the relations among F I‘c, N N and the
tensors ez, 25 and P, restricted to C, associated with any observer & adapted
to O. Let us remark that these quantities are space-like and that their parallel
projections on ¢ do not depend on the choice of such a 2.

In the n-body mechanics, the affine structure of 5™ does not play any
essential role. The main results where obtained taking into account the C*®
bundle structure on T, the space-like metric, the space-like connection and
the inertial connection. Then the theory of mechanics on E® can be easily
and completely revised on C.
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In particular, a foree is a morphism over C F.: 7C — T%C such that

I, &% =0, a dynamical system is a pair 9, = (G, I,) and a solution of Z,

FC
is a motion M: T — O, which satisfies the Newion law of motion V.dM = 0.
We can make a direct comparison between free and constrained mechanics.

Theorem. Let F: TE® — TE be a force. Moreover, let F, = n"oF®:

70 10, F* = gto™: 70 — (TO)* and B = ¥ — F*: 7C — (7).

Let M: T — C be a motion which is a solution of (G, T.), i.e. such that

V.dM = Fod M.

(1]
(2]

(3]

[4]

(5]

(6]

(7]

(8]

(9]

[10]

H.

P.

H.

M.

M.

Ww.

The M is a solution of (G, F™ 4+ R), i.e. we have VdM = (F - R)od M.
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Abstract

An aziomatic and geomelrical approach to classical mechanics is presented, emphasising
the basis role of connections.

A bundle BT endowed with a space-like melric g, a space-lile connection I and
an inertial conmection @' leads to the absolute mechanics and to Newion’s law Y'/'dM =0,

The 1-particle treatment can be easily extended o the n-particles and to the constrained
cases.

The observed mechanics is oblained by taking into account a continuwm 2, whick
determines the position space P= /P, endowed with a space-like metric gz, a space-like
comnection I'gp and an inertial pseuwdo-connection [z .

Several classical results and approaches are contained as particular cases.
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