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Generalized multiplication modules (*¥)

Introduction

All rings considered in this paper are commutative and have unity. A sub-
module N of an R-module M is said to be prime if whenever ak belongs to ¥,
¢ in R and k¥ in M — N, then «M CN. Equivalently whenever AKC N,
A an ideal of B and K a submodule of M, K ¢ N implies that AM C N [3].
N ig said to be a multiplication submodule of M if whenever a submodule K
is contained in N, there is an ideal 4 of K such that K = AN. M is said to
be a multiplication module if every submodule of M is a multiplication sub-
module [5]. In case every proper submodule of 3 is a multiplication sub-
module, we call M to be a generalized multiplication module. M is said to be
an almost multiplication module if M, is a multiplication Ry-module for each
prime ideal P of R. Dimension of M is defined to be » if there exist proper
prime submodules P, Py, ..., P, such that P,< P;<< P, < .. << P, but there
is no such chain of » 4 2 prime submodules. We prove here that the dimension
of a multiplication module, even of an almost multiplication module, cannot
exceed one. In section 4, we define a (PC)-module and establish the structure
of a (PO)-generalized multiplication module over a quasi-local ring.

1 — The following results can be easily derived from the corresponding
results of D.D. Anderson [1].

Lemma 1.1. If M is a module over a quasi-local ring R then every multi-
plication submodule of M s cyclic.
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Lemma 1.2. IfN is a multiplication submodule of an R-module M and S
is any multiplicatively closed subset of R then Ny is a multiplication submodule
of Mg over Egs.

Lemma 1.3. ZLet N be a submodule of an R-module M such that (O.N)
ts contained in only finitely many maximal ideals Py, P, ..., P, of RB. If Np is
a cyclic submodule of Mp over Rp for @ =1,2,..,7, then N is a cyclic sub-
module of M.

Lemma 1.4. If N is a multiplication submodule of an R-module M such
that (0 :N) is contained in only finitely many mazimal ideals of B then N is eyclic.

Lemma 1.5. Let N be a submodule of a module M over a semi-quasilocal
ring K. The following statements are equivalent.

(1) N s a multiplication submodae.
(2) N s locally cyclic.
(3) N is cyclic.

Lemma 1.6. If M is a multiplication (almost multiplication) module over
a semi-quasi-local ring R then every submodule of M is eyclic.

Definition 1.7. Let N be a submodule of an R-module M. If for
any two ideals 4 and B of R with AN C BN, we have A C B -} (O.N), then
we say that N is & weak-cancellation submodule and if we have 4 C B, then
we say that N is a cancellation submodule.

Lemma 1.8. Let N be a submodule of an R-module M. The following
statements are equivalent.

(1) N is weak cancellation and multiplication submodule.
(2) N is finitely generated and multiplication submodule.
(3) N is finitely generated and locally cyclic.

The proof for (3) implies (1) is as follows. Let K be a submodule of M
with K C N. Let P be any prime ideal of R. Since N is finitely generated
and N, is ecyclic, Kp= (Kp:Np)Np= ((K:N)N), which implies that
K = (K:N)N and thus N is a multiplication submodule. N, being cyclic is
weak cancellation and hence N is weak cancellation since it is finitely generated.

Corollary 1.9. A noetherian almost multiplication module is a mulii-
plication module.
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2 — In this section we prove that a multiplication module and an almost
multiplication module has dimension at most one. The proof is based on the
following lemmas.

Lemma 2.1. Let N be a multiplication submodule of an R-module M.
If a submodule K s contained in N then I{ = (K.N)N.

Proof. Trivial.

Lemma 2.2. If every prime submodule of M is finitely generated then
every submodule of M is finitely generated.

Proof. The proof can be easily derived from the corresponding proof
for ideals.

Lemma 2.3. If N is a prime submodule of M then (N.M) is a prime
ideal of R.

Proof. Let(N:M)=P. Letabe P. ThusabM C N buteM ¢ N. N being
prime, we get that bM C N which implies that b e P.

Lemma 2.4. Let M be an R-module and N « proper prime submodule
of M. Let (N:M) = P (it is prime ideal of R). Then there is an injective map f
from the set of prime submodules of M whick are contained in N fo the set of
proper prime submodules of Mp. Moreover if M is a multiplication submodule
of M then f is bijective.

Proof. Let S = R-— P which is a multiplicatively closed subset of &
containing the unity 1 of B. Let N¢ denotes the extension of N to M, and
Nee the contraction of N¢ to M. If K is a prime submodule of M contained
in N then it is easy to see that K is a prime submodule of M,. We show that
Ke< M,. Suppose Ke= M,. If me M — N then (m/l)e M,= K°C Ne.
Let m/l = n/s for some ne N and seS. Thus we can find s’ € § such that
s'(sm — n) = 0 which implies that s'sm = s'ne N. But m¢ N and so s'sM C N,
Therefore s's € (N:M) = P which is impossible.

Now suppose that there is a prime submodule H contained in N such
that K¢ = He¢. We shall prove that K = H. Suppose K = H. There exists
kLeK—H (or he H—K). Then kfleKe= H°. Let kfl=h/s for some
heH and se8. Let s’ S such that s'(sk—h)=0. Thus s'sk=sheH
and k¢ H which implies that s'sM CH. Hence s'se(H:M)C(N M) =P
which is impossible.
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Now we assume that M is a multiplication submodule of M. Thus for
each submodule K, K = (K:M)M. Let 7 be any proper prime submodule
of M,. It is easy to see that 7 is a prime submodule of M. We shall prove
that T*C N. If T°¢ N then (I*:M)¢ (N: M) = P. Let se(T*:M) N § which
is non-empty. Thus s M C 7 which implies that (s)eM,C T = T. But (s)*’==R».
Hence M, C T which is impossible. This completes the proof.

Lemma 2.5. Let M be an R-module such that every submodule of M is
eyclic. If for a non-zero element @ of M, (x) and (0) are proper prime submodule
of M then (z) is « maximal submodule of M.

Proof. Let me M such that M = (m). Let 4 be the annihilator ideal
of M. Then we know that M and R[4, as modules, are isomorphic. Since (0)
is prime submodule of M, it is easy to see that 4 is a prime ideal of B. Thus
R/A is a domain. As each submodule of M is cyclic, each ideal of R/A is
prinecipal and hence every non-zero proper prime ideal of R[4 is maximal
which implies that every non-zero proper prime submodule of M is maximal.

Lemma 2.6. If f: M — M’ is an epimorphism of R-modules with Ler-
nel K then there is one-to-one correspondence between the set of prime submodules
of M which contain K and the set of proper prime submodules of M'.

Proof. Let N be a prime submodule of M containing K. Let re R
and m € M such that rf(m) e f(M) but f(m) ¢ f(N). We show that »M'C f(N).
As f(rm) = rf(m) € f(N), f(rm) = f(n) for some ne N. Thus rm —ne K and
so rmeK + N =N and m¢ N which implies that »M CN. Hence rm’
= ¢f(M) = f(rM)C f(N). Similarly it can be proved that if N' is any prime
submodule of M’ then f~1(M') is a prime submeodule of M containing K. That
the correspondence is one-to-one is clear.

Lemma 2.7. If M is an R-module such that every submodule of M is
cyclie then dim (IM)<1.

Proof. Suppose that there exist proper prime submodules P,, P,, P,
of M such that P, < P, < P,. By Lemma 2.6 we get that (0) < P,/P,<<C Py/P;
are proper prime submodules of M /P, which is a contradiction to Lemma 2.5
since every submodule of M/P, is cyclic. :

Theorem 2.8. If M is a multiplication module (almost multiplication
module) over a ring R then dim (M)<1. )
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Proof., If Pis any prime ideal of R then M, is a multiplication module
over the quasi-local ring R,. By Lemma 1.1 we get that every submodule
of My is eyelic. Let & be any proper prime submodule of M. Then P = (N : M)
is a prime ideal of B. Thus dim (M,)<1 by Lemma 2.7. Using Lemma 2.4
we deduece that dim (M)<1.

Lemma 2.9. Let M be a cyclic module over a ring R. Let N be a non-
cyclic submodule of M such that every submodule properly containing N is cyclie.
Then N is a prime submodule of M.

Proof. Let M = (x). Let A be the annihilator ideal of M. We know
that M and R/4, as modules, are isomorphic. Let f: M — R/A be this iso-
morphism. Thus f(&) is a non-principal ideal of R/4 and every ideal properly
containing f(N) is principal. Hence f(N) is a prime ideal of R/4 ([2],, p. 33)
and consequently N is a prime submodule of M.

Theorem 2.10. If every prime submodule of an R-module M is eyclic
then every submodule of M is cyclic.

Proof. Let M = (x). Let 4 and f be as in Lemma 2.9. Since every
prime submodule of M is eyclic, every prime ideal of E/d is prinecipal and
hence every ideal of R/A is principal ([2], Theorem 2.1). Hence every sub-
module of M is eyelic.

Theorem 2.11. A finitely generated almost multiplication module M over
a multiplication ring R is a multiplication module.

Proof. Let K and N be submodules of M with KCN. As (K:M)
C(N:M), there is an ideal 4 of R such that (K:M) = A(¥N:M). For any
prime ideal P of R, (Kp.Mp) = Ap(Np: M) since M is finitely generated.
By Lemma 1.1, M, is cyclic. Thus K, = (Kp:Mp)Mp = Ap(Np: Mp)M;
= ApNp = (AN)p,. Hence K = AN.

Theorem 2.12. Let M be a module over an almost multiplication ring R.
If M is a multiplication submodule of M, then M 4s an almost multiplication
module.

Proof. Let P be any prime ideal of B and X, N be any two submodules
of M, with K.C.N. As M, is cyclic by Lemma 1.1 and R, is a multiplication
ring, there is an ideal A of R, such that (X :Mp)= A(N:.Mp) so that K
= (K. Mp)Mp= AN . Mp)Mp = AN. Thus M, is a multiplication Rr-module
or each prime ideal P of R. This completes the proof. -
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Theorem 2.13. Let M be a module over a multiplication ring R. If M
ts a mulliplication submodule of M then M is a multiplication module.

Proof. Let K and N be any two submodules of M with K C N. Since
M is a multiplication submodule of M, I = (K. M)HM and N = (N . M)M.
Now (K:M)C(N:M) and R is a multiplication ring. There is an ideal 4
of I such that (K:N) = A(N:M). Hence X = (K M)M = A(N.M)M = AN.
This completes the proof.

Theorem 2.14. Let M be a faithfull module over a domain R such that
M is a multiplication submodule of M. Then

(i) M is an almost multiplication module if and only i¢f R is an almost
multiplication ring;
(il) M is a multiplication module if and only if R is a multiplication ring.

Proof. Let 0 #me M and re R such that rm = 0. Let (m)=AM
where A is an ideal of B. As r4AM = r(m)= (0), r4 = (0). Thus r =0
sinee 4 5= (0). It shows that M is torsion free. It is easy to see that M is
locally cyclic and torsion free and hence loeally cancellation module and
consequently M itself is a cancellation module. The desired results are now
immediate.

3 — In this section we study weak multiplication modules which are
defined to be the modules in which every prime submodule is a multiplication
submodule.

Theorem 3.1. A weak multiplication module is an almost multiplication
module and hence its dimension is <1.

Proof. Let M be a weak multiplication module over a ring RE. Let P
be any proper prime ideal of B. It is clear that M, is also a weak multiplication
module over the quasi-local ring Ir. Thus every prime submodule of 3,
being- a multiplication submodule, is cyclic by Lemma 1.1. Theorem 2.10
implies that every submodule of M, is eyclic. Thus M, is a multiplication
module and hence M is an almost multiplication module. By Theorem 2.8
we deduce that dim (M) <1.

Corollary 3.2. A weak multiplication module over a quasi-local (semi—
quasi-local) ring is a multiplication module.

Lemma 3.3. A4 mawximal submodule is prime.
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Proof. Trivial

Theorem 3.4. If M is an R-module such that M is ¢ muliiplication
submodule of M then M possesses a maximal (and hence prime) submodule.

Proof. Let 0 xe M. Let P be any maximal ideal of B containing 4,
the annihilator ideal of . For some ideal I of R, (%) = IM. Observe that
PM < M. In fact if PM = M then P(z)= PIM = IM = (). Nakayama's
Lemma implis that P + A = R which is impossible. Let ¥ be any sub-
module of M such that PM CN. Thus PC(N:M). Therefore (N: M) =P
or B and consequently N = (N.M)M = PM or RM which proves that &
is a maximal submodule.

Lemma 3.5. Let M be a cancellation module over a ring R. If M is a
weak multiplication module then M s o multiplication module and R is a multi-
plication ring.

Proof. Any submodule ¥ of M is of the type N = A M for some ideal
4 of R. It can be checked that the mapping 4 — A M, A an ideal of R, is an
isomorphism from the lattice of ideals of B to the lattice of submodules of M
in which prime ideals correspond to prime submodules. Since M is a weak
multiplication module, B is a weak multiplication ring and hence a multipli-
cation ring ([6], p. 429) which implies that M is a multiplication module.

Theorem 3.6. A finitely generated, faithfull and weak multiplication
module over a ring R is a multiplication module and R is o muliiplication ring.

Proof. Let 4 and B be any two ideals of B such that AM C BM. For
any proper prime ideal P of B, Mp is eyclic by Lemma 1.1 and Theorem 3.1.
Thus Mpis a weak cancellation module. AM C BM implies that 4,M,C B, M,
and s0 ApC By -4 (0:M),. Therefore 4 CB 4 (0: M) = B since M is faith-
full. The result now follows from Theorem 3.5.

4 — In this section we study generalized multiplication modules which
are defined to be the modules in which every proper submodule is a multipli-

cation submodule.

Definition 4.1. A module M over a ring R is said to be a pseudo
cancellation module ((PC)-module) if for each proper ideal 4 of R, AM < M.

Lemma 4.2. Let M be a (PC)-module over a ring R. If M is a multi-
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plication submodule of M then every proper submodule of M is contained in «
mazimal submodule.

Proof. Let N be a proper submodule of M. As (N.M)M = N < M,
(N:M) is a proper ideal of E. Let P be any maximal ideal of E containing
(N:M). So NCPM < M. Tt is easy to check that PM is a maximal sub-
module of M.

Lemma 4.3. A generalized multiplication module has dimension <2,
Proof. It follows from Theorem 2.8.

Lemma 4.4. Let M be a module over a rving R such that M is a multi-
plication submodule of M. If R is noetherian then M is noetherian. If M has
a torsion free element and R is a domain then the converse is also irue.

Proof. For every submodule N of M, N = (N:M)M. The direct part
now follows from the fact that if N, C N,C ..., be a chain of submodules of M
then (N,:M)C(N,:M)C..., is a chain of ideals of R. Let x be a torsion free
element in M. If 4,CA,C.., is a chain of ideals in domain R then
A,xC A,xC..., is a chain of submodules of M. For some r, 4,0 = 4,,®
which implies that 4, = 4,,,.

Theorem 4.5, If M is a (PO)-generalized multiplication module over ‘
noetherian ring R then M is noetherian.

Proof. Let N be any proper submodule of M. Then N is a multipli-
cation submodule of M. By Lemma 4.4, N is finitely generated. Only thing
remains to prove is that M is finitely generated. Consider two cases.

(i) If M has a maximal submodule K then M = K -+ (@) for every
zeM — K. I being finitely generated, M is finitely generated.

(ii) If M has no maximal submodule then for each submodule 4 of I,
there is a submodule B of M such that 4 << B< M. B being a multiplication
submodule, for some ideal I of B, A =IBCIM < M. Again there is an
ideal J of R such that 4 = J(I M) = (JI)M which shows that M is a multi-
plication submodule of M. Again by Lemma 4.4, we get that M is noetherian.

Corollary 4.6. A (PO)-generalized multiplication module over a quasi-
local (semi—quasi-local) ring is noetherian.

Definition 4.7. A module M over a ring R is said to be quasi-local
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if M has a unique maximal submodule which contains all the proper sub-
modules.

Theorem 4.8. Let M be a (PC)-generalized multiplication module over
a quasi-local (semi-quasi-local) ring R. If M is not o multiplication module
then there is a maximal submodule N of M such that N is a local module.

Proof. If M is not a multiplication module than there is a submodule
N of M such that there is no ideal A of R with ¥ = A M. If N is not max-
imal then there is a submodule K such that ¥ < K < M. For some ideal I
of R, N =IKCIM < M. Again for some ideal J or R, N = J(IM) = (JI)M
which contradicts the choice of N. Thus N is a maximal submodule. Let
{x;: j €W} be the collection of those elements of N for which (z,)<< N. Asin
the preceeding part of the proof, we can find ideals I;of B suchthat (x;) = I, M.
Thus  (x;) = (> I,) M and it follows that 3 (;) s« N. It is obvious that

jeEw JEW JEW
> (@;) is the unique maximal submodule of ¥. By Lemma 1.6, every sub-
JEW
module of ¥ is cyclic and hence N is a local module.

Lemma 4.9. Let M be a (PC)-module over a ring R. If M is a multi-
plication submodule of M then there is a 141 correspondence between the set
of maximal ideals of B and the set of maximal submodules of M. Thus R is
quasi-local (semi—quasi-local) if and only if M is quasi-local (semi—quasi-local).

Proof. The proof follows from the fact that if P is a maximal ideal
of B then PM is a maximal submodule of M and if S is a maximal submodule
of M then (S:M) is a maximal ideal of B and (S:M)M = S.

Lemma 4.10. Let M be module over a domain R having a torsion free
element m. If M is a multiplication submodule of M then M is torsion free.

Proof. Suppose 0= xe M and » € R such that »# = 0. For some ideal
I of R, (#) =IM. Thus rIM = (0). Therefore for each i€ I, rim = 0 which
implies that 7¢ = 0 and so »I = (0). Since I == (0), » = 0.

Lemma 4.11. Let M be a module over a domain R having a torsion
free element. If P is any non-zero prime ideal of R then Mp has a torsion free

element over the domain Rp.

Proof. MTrivial.
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Theorem 4.12. If M is « multiplication module over a domain R
having a torsion free clement m then R is a Dedekind domain. '

Proof. The proof follows from the fact that B and Rm, as R-modules,
are isomorphic.

Theorem 4.13. Let M be a (PC)-module over a quasi-local ring R.
Then M is a generalized multiplication module if and only if M satisfies one
of the following: (a) M is a wuniserial module; (b) M has a unique infinite
descending chain of submodules without proper refinements; (¢) M possesses
mazximal submodules and through each maximal submodule, there passes a unique
composition series of M; (d) M possesses maximal submodules and all the non-
zero submodules contained in o maximal submodule form an infinite descending
chain without proper refinements.

Proof. Suppose M is a generalized multiplication module. We discuss
the following two cases.

Oase I. M is a multiplication submodule of M.

Since R is quasi-local, M is cyeclic. Let M = (w). If 4 denotes the annihilator
ideal of M then we known that M and R/4 as R-modules, are isomorphic.
Now every proper submodule of M, being multiplication submodule, is cyclic.
Thus every ideal of R/A is principal. Also R is a quasi-local ring implies that
RJ/A is a local ring. If P is the unique maximal ideal of E then P=PjA

is the unique maximal ideal of B = R/4 and (] (P)" = (0). Two cases arise
n=1

() (P)" = (P)* for some least positive integer #n. Then (P)" = (0). Ifze R

is such that (z)=P then the only ideals of R are R, (%), (%), ..., (Z)"=(0). Thus

there exist @y, @, ..., ¥, in M such that the only submodules of M are M,

(1), (@o)y ey (@) With M > (m) > (@) > ... > (x,) = (0). Thus M is a uni-

serial module.

(ii) (P)»> (P)= for every integer n. Then (0) = ) (P)* is a prime ideal
n=1

of R. Let I be any non-zero proper ideal of R. Let r € R be such that I = (7).

Tet & be the integer such that 7 e (P)* — (P)*1. Tet ¥ = %(%)* where z€ R

and Z¢ P. But then Z is a unit and hence (7) = (8)* = (P)*. Thus the only

ideals of R are R, (0), (Z), (%)%, (B)% ... with B> (F) > (%)* > (Z)* > ... . There-

fore we can find @y, @, #3, ... in M such that the only submodules of M are

(0), B, (@y), (@), (@), - With M > (2) > (@) > (@) > ...
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Case II. M is not a multiplication submodule of M.

In this case, M possesses a maximal submodule by Theorem 4.8. Let N be
any maximal submodule. Since M is a generalized multiplication module,
N is a multiplication submodule. As discussed in Case I, either N is a uniserial
module or the non-zero submodules of ¥ form an infinite descending chain
without proper refinements. Thus one of the following holds:

(i) M possesses maximal submodules and through each maximal submodule,
there passes a unique composition series of M ;

(ii) M possesses maximal submodules and all the non-zero submodules con-
tained in a maximal submodule form an infinite descending chain without
proper refinements.

Conversely, assume that M satisfies any one of (a), (b), (¢) or (d).

(i) Let M satisfies (a). Let (0) < N, < N,<..<N,= M be the unique
composition series of M. If 0 = 2 € N, and y € N, — N, then clearly () = N,.
Also the submodule () is one of ¥N,, N,,..., N, and it is not difficult to see
that (y) = N,. Continuining in this way, we get that all submodules of M
are cyclic and hence M is a multiplication module.

(if) Let M satisfies (b). Let M > N, > N,> ... be the unique infinite de-
scending chain of submodule without refinements. If # € M — N, is any ele-
ment then ¢ N, and hence (») is different from N;, Ny, Ny, ....

It implies that (#) = M. Similarly if we consider the chain N, > N, > N, ...

then we find that ¥, is eyclic. Continuing we conclude that every submodule
of M is cyclic and hence M is a multiplication module.
(iii) Suppose M satisfies (c). Let N, be a maximal submodule of M. Let
M>N,>N,>..> N,=(0) be the unique composition series of M passing
through N,. Let S be any proper submodule of M. Then M > § is a normal
series of M and it can be refined to a composition series

M>8,>8>.>8,>8=8>8,>..>8,=(0).

Thus 8, is a maximal submodule and through 8,, there passes a unique com-
position series. Thus S, is uniserial and therefore each submodule of 8, is
cyclic. It implies § is cyeclic. We find that each proper submodule of M is
cyclic and hence M is a generalized multiplidation module.
(iv) Suppose M satisfies (d). Let N be a maximal submodule of M and all
the submodules contained in ¥ be N,, N,, N, ... such that M > N> N,
>N,>N;>... Thus N> N,> N,> N,... is the unique descending chain
of submodules of N.

Hence N, N;, N,,... all are cyclic. If N = () and ye€ M — N then
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clearly M = (x) + (y). Let S be any submodule of A different from (0)
and M. Then M = M/S is generated by 2 =2 -+ & and =y -+ S. Let P
be the family of all proper submodules of M. TLet (0)CB,CB,C ... be any

infinite ascending chain of elements of F. Let B = [.B; which is a submodule
of M. Two cases arise. =1

(1) B< M (2)B=J1. If B = M then #eB, and y € B, for some 7 and j.
If i<j then %, € B, and thus B; = M which is not true. Thus only possi-
bility is B< M and hence BeF is the least upper bound of the chain
0CB,ChB,,.... Zorn’s lemma guarantees the existence of a maximal ele-
ment P in F. It immediately implies that P is a maximal submodule of M
containing §. Thus there exists a unique infinite descending chain M > P
>8> 8>...>8;.,>8 =58> 8:,.>.. passing through M and 8, since
S C P. Thus P has a unique infinite descending chain P > §; > 8, > ... without
refimements. Thus P, 8, 8,,... all are cyclic and hence § is cyclic. Thus
every proper submodule of M is cyeclic and therefore M is a generalized multi-
plication module.
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