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On von Neumann regular rings (IX) (*¥)

Introduction

Generalisations of quasi-injective and injective modules, noted 1QCc and
MD-injective, are introduced to study von Neumann regular and associated
rings. Left 1qc rings are proved to be left continuous (in the sense of Utumi [6])
while left self-injective regular rings are characterised as left non-singular left
1QC rings. If ,M is either 1Qc or MD-injective whose complement left sub-
modules are isomorphic to direct summands, then #/V is von Neumann regular,
where B = End (,M) and V = {f € E[ker f is essential in .M} is the Jacobson
radical of B. Semi-simple Artinian rings are characterised as rings whose left
modules are MD-injective. A generalisation of von Neumann regular rings is
also considered and several interesting properties are derived.

Throughout, A represents an associative ring with identity and A-modules
are unitary. J, Z will denote respectively the Jacobson radical and the left
singular ideal of A. 4 is called left non-singular (rvesp. semi-simple) iff Z =0
(resp. J = 0). More generally, a left A-module M is called non-singular iff
Z(M), the left singular submodule, is zero.

An usual, (1) an ideal of A means a two-sided ideal; (2) a left (right) ideal
of A is called reduced iff it contains no non-zero nilpotent element; (3) A is
called a left V-ring iff every simple left A-module is injective [3]; (4) A left
A-module M is called p-injective iff for any principal left ideal P of A, any
left A-homorphism g: P — M, there exists y € M such that g(b) = by for all
beP. Then A is von Neumann regular iff every left A-module is p-injective.
It is well-known that A is von Neumann regular iff every leff A-module is
flat. If I is a p-injective left ideal of A, then A/I is a flat left A-module [7];.

(*) Indirizzo: Université Paris VII, U. E. R. de Mathématique et Informatique,
2 Place Jussieu, 75251 Paris Cedex 05, France.
(**) Ricevuto: 14-V-1982,
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We here introduce the following definitions.

Def. 1. A left A-module M is called 1qc, if, for any essential left sub-
module N such that there exists a non-zero complement left submodule of
A isomorphie to a factor module of N, every left A-homomorphism of N
into M may be extended to an endomorphism of .

Def. 2. Aleft A-module M is called Mp-injective if, for any left d-module
P which is isomorphic to a direet summand of M and any left A-monomor-
phisms f, ¢ of P into I, there exists an endomorphism % of M such that
hg = f{.

Obviously, any quasi-injective left A-module is 1Qc and any injective left
A-module is MD-injective.

Left self-injective rings are generalised to left continuous rings by Utumi [6].
The notion of continuity has been extended to modules and studied by various
authors (efr. [1] and [5]). Recall that a left A-module M is continuous iff
(a) any complement left submodule of M is a direet summand of ,M and
(b) any left submodule of M which is isomorphic to a direct summand of , M
is a direct summand of , 3.

We proceed to prove that 1qc left modules are intermediate between quasi-
injective and continuous left modules (this justifies the notation).

Theorem 1. If M is an 1QC left A-module, then M s continuous.

Proof. We first prove that any non-zero complement left submodule ¢
of M is a direct summand of ,M. Let K be a relative complement of ,C in
oM such that B = C@ K is an essential left submodule of M. Suppose that
B M. If p: E — C is the canonical projection, then by Zorn’s Lemma, the
set of submodules N of ,M containing F such that p extends to a left
A-homomorphism from N into ¢ has a maximal member Q. Let h: 0 — O
be the extension of p to Q. If i: ¢ — M is the inclusion map, since ,M is
1QC and Q/ker b ~ C, then ih: 40 — M extends to an endomorphism g of 3.
Suppose that g(M)¢ 0. Since C is a relative complement of K in ,M ([4];,
Proposition 1.4), then (g(3M) 4 C)N K520, Let 0 ke K n (g(H) + C),
k=g(m) ¢, me M, ceC. Then L= {ze M[g(2) € E{ is a submodule of M
which strictly contains @ (because g(m)¢ ¢ and hence m ¢ @Q but g(m) =k
—c¢eR). If r: L - F is the map defined by 7(y) = g(y) for all y € L, then
pr: L — O is an extension of 7 to L and therefore an extension of p to L,
which contradicts the maximality of @. This proves that g(M)C ¢ whence
g(HM) = C showing that whether B = M or not, the epimorphism p extends
to an epimerphism g: M — C. Now since ker g N C = 0 and for any u € 3,
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w = g(u) + (v —g(u)), where g(u) € C, g{u — g(u)) = g(u) — g*(u) = g(u) — g(u) =0
which yields M = @ kerg. Next, we prove that if D is a left submodule
of M isomorphic to ,C, then ,D i3 a direet summand of ;M. TIf I is a rela-
tive complement of D in 3, then B = D@ I is an essential left submodule
of M. If »: C — D is an isomorphism, w:D — C the inverse isomorphism,
$: B — C the extension of w to B, the preceeding proof then shows that s
may be extended to t: oM — ,C. If j: D — M is the inclusion map, y = vi:
M — D and for any de D, yj(d) = vtj(d) = vt(d) = v8(d) = vw(d) = d which
shows that yj is the identity map on D. This proves that D is a direct sum-
mand of (M, whence M is a continuous left A-module.

A is called a left 190 ring iff 44 is 1Q0C.

Corollary 1.1. Let A be a left 1qC ring. If I is an ideal of A such thai
AL 18 non-singular, then I is a von Neumann regular ring. Consequently, any
reduced ideal of A is a strongly regular ring (cfr. ([6]), Lemma 4.1).)

If L is an essential left ideal of a left 1qQec ring A containing a non-zero
idempotent, then any left A-homomorphism of L info A extends to an endo-
morphism of 4. Since continuous regular rings need not be self-injective
(even with non-zero socle) ([6], p. 172), the next corollary then shows that
1QC left modules form a proper subset of continuous left modules.

(6], Lemma 4.1) and Corollary 1.1 yield the following nice characterisation
of self-injective regular rings.

Corollary 1.2. The following conditions are equivalent:

(1) A is left self-injective regular;
(2) A is a semi-simple left 1QC ring;
(3) A is a left non-singular left 1Q0 ring.

Corollary 1.3. A primitive ring is left self-injective regular iff it is left 1q0.

Left self-injective regular rings need not be left V-rings ([3], p. 107).
Recall that A is LT (resp. MELT) iff every essential (resp. maximal essential,
if it exists) left ideal of A is an ideal.

([7];, Lemma 1.1) and Corollary 1.2 yield

Corollary 1.4. A semi-prime ELT left 1QC ring is ¢ left and right self-
injective regular left and right V-ring of bounded index.

Applying ([2], Corollary 20.3E), ([5], Lemma 2.3) to Theorem 1, we get
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Corollary 1.5. If the direct sum of any two 1QC left A-modules is 1QC,
then any 1QC left A-module is injective. In that case, A is a left Noetherian left
V-ring.

It is well-known (O. E. Villamayor) that A is a left V-ring iff every left
ideal of A is an intersection of maximal left ideals.

Corollary 1.6, The following conditions are equivalent:

(1) A4 is a left self-injective regular left V-ring;

(2) A is & left 10 ring such that any proper left ideal which contains
every minimal projective left ideal of A 1is an intersection of maximal left
ideals.

Proof. Apply ({7}, Proposition 3) and ([7];, Theorem 1) to Theorem 1.

We now characterise rings whose p-injective left modules are np-injective,

Theorem 2. The following conditions are equivalent:

(1) A is a left Noetherian ring whose p-injective left modules are injective;

(2) every p-injective left A-module is MD-imjective.

Proof. (1) implies (2) evidently.

Assume (2). Let M be a p-injective left A-module, H the injective hull
of 4M. Write ¢ = M@ ,H and D = the set of ordered pairs (y, 0) for all
ye M. Then ,D is a direet summand of ,Q and M~ ,D. If i: M — H is
the inclusion map, j: M — @ and k: H — @ the canonical injections, since ,Q
is p-injective, then it is MD-injective by hypothesis, which implies there exists
a left A-homomorphism g: Q — @ such that gki = 4. If p: Q — M is the ca-
nonieal projection, then u = pgk: H - 4 such that wi = pj = identity map
on M. This proves that M is a direet summand of ,H, whenee M = H is
injeetive. Since any direct sum of p-injective left A-modules is p-injective,
then (2) implies (1) by ([2], Theorem 20.1).

The next two results connect 19c and MD-injective modules.

Theorem 1 and the proof of Theorem 2 yield the following MD-injective
analogue of ([2], Proposition 20.4B).
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Theorem 3. The following conditions are equivalent:

(1) any MD-injective left A-module is injective;
(2) the direct sum of any two MD-injective left A-modules is MD-injective;
(8) the direct sum of any two dMD-injective left A-modules is 1QC.

([2], Theorem 24.20), ([6], Theorem 7.10), Theorem 1 and the proof of
Theorem 2 also yield the next result.

Theorem 4. The following conditions are equivalent:

(1) A is quasi-Frobeniusean;

(2) A is a left and right Artinian 1QC ring;

(3) the direct sum of any injective and any projective left A-modules is
MD-injective,

An element a of 4 is called left regular iff I(a) = 0. Call A a left aD-injective
ring if 4A is MD-injective.

Proposition 5. Let A be a left a-injective ring. Then

(1) any left regular element of A is right invertible;
(2) ZcJ;
(3) every left or right A-module is divisible.

Proof. (1) If ce A such that I(c) = 0, f: Ac — A the left A-monomor-
phism defined by f(ac) = a for all a € A, i: Ac — A the inclusion map, since
sde &~ 4A, there exists a left A-homomorphism h: A -> A such that hi = f.
If W(1) = d, 1 = f(¢) = hi(c) = fc) = ¢h(1) = ed which proves (1).

(2) It ze Z, for any a € A, (1 —2za) = 0 implies (1 —za)v = 1 for some
ve A. This proves that zeJ. '

(3) If ¢ is a non-zero-divisor of A, then ¢d = 1 for some de A by (1).

Now ede = ¢ and r(¢) = 0 imply de = 1 which proves ¢ invertible. Then for
any left (resp. right) A-module M, M = c¢M (resp. M = Me).

Let us now turn to a class of rings with special eyclic modules which gen-
eralise von Neumann regular rings.

Write « A satisfies (¥) » if, for any maximal right ideal R of 4, any b e R,
there exists a positive integer n such that A/b»R is a flat right A-module.

Note that a local ring A such that J2 = 0 satisfies (*). Following [2], A4 is
called a liftfrad ring if, for any a €A such that a®* —a eJ, there exists an
idempotent ¢ € 4 such that ¢ —a e J. :
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Proposition 6. Let A satisfy (*). Then

(1) any left regular element is right invertible;
(2) Z2¢d;
(3) ewery left or right A-module is divisible;
(4) if P is a reduced principal right ideal of A, then P = ed, where e is
an idempotent such that (1—e) A is an ideal of A;
(p) A is a liftfrad ring.

Proof. (1) If ¢e A such that I(¢) = 0, suppose that ¢4 == A, Tf M is
a maximal right ideal containing ¢4, there exists a positive integer n such
that A/eM, is flat. This implies that for any left ideal I, I M ¢*"M = eI,
In particular, ¢l = ¢rdent! for some de M. Now (1 —c¢*d)e"tt = 0 implies
¢"d =1 (because I(¢) = 0), which contradicts cA 7= A. This proves (1).

(2) and (3) are proved as in Proposition 5.

4y If P = ad is a reduced principal right ideal, then l(a) Cr(a) and if
ad - r(a) %= A, let M be a maximal right ideal containing ad - r(a). Then
Ala"M, is flat for some positive integer s, which implies e = a*ua"t* for
some € M. Now P reduced implies l{a"+) Cr(a*t!) = r(a) and therefore
{(1— a™y) € l{a™™t) Cr(e) C M implies 1 € M, contradicting M = A. This proves
that a4 + r(a@) = A and we get ¢« = a® for some be Ad. Then P reduced
implies & = aba and P = ¢A, where ¢ = ab is idempotent. Since (ed — ede)?=
for any deA and P is reduced, then eA(l —e)= 0 implies A(1 —e¢)Cr(e)
= (1 —e¢)4 which proves that (1 —e)Ad is an ideal of A.

(5) Let aed, If ad + v(a) = A, then @« = a2, b€ A, and since (1— ab)
is right invertible, then a(l — ab) = 0 implies ¢ = 0. Therefore if a £ 0, let
M be a maximal right ideal eontaining a4 + 7(a). The proof of (4) then shows
that there exists a positive integer » and « € M such that (1 — a™u)artt = 0.
Since (1— a™) is left invertible, a1 = 0 which proves that J is a nilideal.
Then (5) follows from ([2], Proposition 18.21).

Corollary 6.1. A is strongly regular iff A is a reduced ring satisfying (*).

We now mention two results analogous to & well-known theorem of C. Faith-
Y. Utumi (cfr. [4];, Theorem 2.16) concerning quasi-injective modules. In
the next two results, M denotes a left A-module, E = End (,M), V= {f € B/ker f
is essential in M7},

Proposition 7. Let M be an 10C left A-module. Then

(1) BV is von Neumann regular and V is the Jacobson radical of Iy
(2) E is a liftjrad ring.
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Proposition 8. Let M be a MD-injective left A-module. Then V is an
ideal of E which is contained in the Jacobson radical of E. If, in addition,
every complement left submodule of M is isomorphic to a direct summand of +M,
then V is the Jacobson radical of E and B[V is von Newmann regular.

We are now in a position to characterise semi-simple Artinian rings in
terms of 1Qc, Mp-injective modules and rings satisfying (*). If every divisible
singular left A-module is injective, then A is left hereditary. If A is a semi-
prime left Goldie ring, then it is well-known that every essential left ideal
of 4 contains a non-zero-divisor. Then ([2], Theorem 24.20), ([5], Lemma 2.3),
([7]4, Theorem 2.4), Theorem 3, Proposition 6 and the proof of Theorem 2
yield

Theorem 9. The following conditions are equivalent:

(1)

(2) every finitely generated left A-module is 1QC;
(3) every left A-module is MD-injective;
(4)

(5) A is a left 1qC ring whose divisible singular left modules are injective;

(6) A is a semi-prime ring whose MD-injective left modules coincide with
flat left modules;

(1) A is a semi-prime left MD-injective, left or right Goldie ring;

(8) A is a semi-prime left or right Goldie ring satisfying (*).

We conclude with a few remarks.

Remark 1. Since a reduced left ideal is left non-gingular, Proposition 6(4)
ensures that ([1], Corollary 6) holds for rings satisfying (¥).

Remark 2. If 4 is a prime ring satisfying (*), then (a) the centre of 4
is a field, (b) either 4 is a division ring or every non-zero ideal of A contains
a non-zero nilpotent element. (This is motivated by ([7]., Remark).

Remark 3. A semi-prime left 1gc ring with essential left socle is left
self-injective regular. (Such rings need not satisfy the maximum condition on
left annihilators).

Remark 4. Let A be a left 1Qo ring satisfying any one of the following
conditions (1) 4 contains a non-zero non-singular left ideal or (2) A has
non-zero p-injective left socle. Then A is left self-injective. It follows that
a left 1Q0 ring is either left self-injective or each of its non-zero left idesls
contains a non-zero nilpotent element belonging to its left singular ideal.

27
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