## ROGER YUE CHI MING (\*)

# On von Neumann regular rings (IX) (\*\*)

### Introduction

Generalisations of quasi-injective and injective modules, noted IQC and MD-injective, are introduced to study von Neumann regular and associated rings. Left IQC rings are proved to be left continuous (in the sense of Utumi [6]) while left self-injective regular rings are characterised as left non-singular left IQC rings. If  $_AM$  is either IQC or MD-injective whose complement left submodules are isomorphic to direct summands, then E/V is von Neumann regular, where  $E = \operatorname{End}(_AM)$  and  $V = \{f \in E | \ker f \text{ is essential in }_AM \}$  is the Jacobson radical of E. Semi-simple Artinian rings are characterised as rings whose left modules are MD-injective. A generalisation of von Neumann regular rings is also considered and several interesting properties are derived.

Throughout, A represents an associative ring with identity and A-modules are unitary. J, Z will denote respectively the Jacobson radical and the left singular ideal of A. A is called *left non-singular* (resp. semi-simple) iff Z = 0 (resp. J = 0). More generally, a left A-module M is called non-singular iff Z(M), the left singular submodule, is zero.

An usual, (1) an ideal of A means a two-sided ideal; (2) a left (right) ideal of A is called reduced iff it contains no non-zero nilpotent element; (3) A is called a left V-ring iff every simple left A-module is injective [3]; (4) A left A-module M is called p-injective iff for any principal left ideal P of A, any left A-homorphism  $g: P \to M$ , there exists  $y \in M$  such that g(b) = by for all  $b \in P$ . Then A is von Neumann regular iff every left A-module is p-injective. It is well-known that A is von Neumann regular iff every left A-module is flat. If I is a p-injective left ideal of A, then A/I is a flat left A-module [7]<sub>4</sub>.

<sup>(\*)</sup> Indirizzo: Université Paris VII, U. E. R. de Mathématique et Informatique, 2 Place Jussieu, 75251 Paris Cedex 05, France.

<sup>(\*\*)</sup> Ricevuto: 14-V-1982.

We here introduce the following definitions.

- Def. 1. A left A-module M is called 1QC, if, for any essential left submodule N such that there exists a non-zero complement left submodule of M isomorphic to a factor module of N, every left A-homomorphism of N into M may be extended to an endomorphism of  ${}_{4}M$ .
- Def. 2. A left A-module M is called MD-injective if, for any left A-module P which is isomorphic to a direct summand of  ${}_{A}M$  and any left A-monomorphisms f, g of P into M, there exists an endomorphism h of  ${}_{A}M$  such that hg = f.

Obviously, any quasi-injective left A-module is IQC and any injective left A-module is MD-injective.

Left self-injective rings are generalised to left continuous rings by Utumi [6]. The notion of continuity has been extended to modules and studied by various authors (cfr. [1] and [5]). Recall that a left A-module M is continuous iff (a) any complement left submodule of M is a direct summand of  ${}_{A}M$  and (b) any left submodule of M which is isomorphic to a direct summand of  ${}_{A}M$  is a direct summand of  ${}_{A}M$ .

We proceed to prove that IQC left modules are intermediate between quasiinjective and continuous left modules (this justifies the notation).

Theorem 1. If M is an IQC left A-module, then AM is continuous.

**Proof.** We first prove that any non-zero complement left submodule C of M is a direct summand of  $_{4}M$ . Let K be a relative complement of  $_{4}C$  in  $_{A}M$  such that  $E=C \oplus K$  is an essential left submodule of M. Suppose that  $E \neq M$ . If  $p: E \to C$  is the canonical projection, then by Zorn's Lemma, the set of submodules N of  $_{A}M$  containing E such that p extends to a left A-homomorphism from N into C has a maximal member Q. Let  $h: {}_{A}Q \to {}_{A}C$ be the extension of p to Q. If  $i: C \to M$  is the inclusion map, since  ${}_{4}M$  is IQC and  $Q/\ker h \approx C$ , then  $ih: {}_{A}Q \rightarrow {}_{A}M$  extends to an endomorphism g of  ${}_{A}M$ . Suppose that  $g(M) \not\subset C$ . Since C is a relative complement of K in  $_AM$  ([4]<sub>1</sub>, Proposition 1.4), then  $(g(M) + C) \cap K \neq 0$ . Let  $0 \neq k \in K \cap (g(M) + C)$ , k = g(m) + c,  $m \in M$ ,  $c \in C$ . Then  $L = \{z \in M/g(z) \in E\}$  is a submodule of AMwhich strictly contains Q (because  $g(m) \notin C$  and hence  $m \notin Q$  but g(m) = k $-c \in E$ ). If  $r: L \to E$  is the map defined by r(y) = g(y) for all  $y \in L$ , then  $pr: L \to C$  is an extension of h to L and therefore an extension of p to L, which contradicts the maximality of Q. This proves that  $g(M) \subseteq C$  whence g(M) = C showing that whether E = M or not, the epimorphism p extends to an epimorphism  $g: M \to C$ . Now since ker  $g \cap C = 0$  and for any  $u \in M$ ,

 $u=g(u)+\big(u-g(u)\big),$  where  $g(u)\in C,$   $g\big(u-g(u)\big)=g(u)-g^2(u)=g(u)-g(u)=0$  which yields  $M=C\oplus\ker g$ . Next, we prove that if D is a left submodule of M isomorphic to  ${}_{A}C$ , then  ${}_{A}D$  is a direct summand of  ${}_{A}M$ . If I is a relative complement of  ${}_{A}D$  in  ${}_{A}M$ , then  $B=D\oplus I$  is an essential left submodule of M. If  $v\colon C\to D$  is an isomorphism,  $w\colon D\to C$  the inverse isomorphism,  $s\colon B\to C$  the extension of w to B, the preceeding proof then shows that s may be extended to  $t\colon_{A}M\to_{A}C$ . If  $j\colon D\to M$  is the inclusion map,  $y=vt\colon M\to D$  and for any  $d\in D$ , yj(d)=vtj(d)=vt(d)=vs(d)=vw(d)=d which shows that yj is the identity map on D. This proves that  ${}_{A}D$  is a direct summand of  ${}_{A}M$ , whence M is a continuous left A-module.

A is called a *left*  $\operatorname{Iqc}$  ring iff  ${}_{A}A$  is  $\operatorname{Iqc}$ .

Corollary 1.1. Let A be a left 1QC ring. If I is an ideal of A such that  ${}_{A}I$  is non-singular, then I is a von Neumann regular ring. Consequently, any reduced ideal of A is a strongly regular ring (cfr. ([6]), Lemma 4.1).)

If L is an essential left ideal of a left 1QC ring A containing a non-zero idempotent, then any left A-homomorphism of L into A extends to an endomorphism of  $_AA$ . Since continuous regular rings need not be self-injective (even with non-zero socle) ([6], p. 172), the next corollary then shows that 1QC left modules form a proper subset of continuous left modules.

([6], Lemma 4.1) and Corollary 1.1 yield the following nice characterisation of self-injective regular rings.

Corollary 1.2. The following conditions are equivalent:

- (1) A is left self-injective regular;
- (2) A is a semi-simple left IQC ring;
- (3) A is a left non-singular left IQC ring.

Corollary 1.3. A primitive ring is left self-injective regular iff it is left IQC.

Left self-injective regular rings need not be left V-rings ([3], p. 107). Recall that A is ELT (resp. MELT) iff every essential (resp. maximal essential, if it exists) left ideal of A is an ideal.

([7]<sub>5</sub>, Lemma 1.1) and Corollary 1.2 yield

Corollary 1.4. A semi-prime ELT left IQC ring is a left and right self-injective regular left and right V-ring of bounded index.

Applying ([2], Corollary 20.3E), ([5], Lemma 2.3) to Theorem 1, we get

Corollary 1.5. If the direct sum of any two IQC left A-modules is IQC, then any IQC left A-module is injective. In that case, A is a left Noetherian left V-ring.

It is well-known (O. E. Villamayor) that A is a left V-ring iff every left ideal of A is an intersection of maximal left ideals.

Corollary 1.6. The following conditions are equivalent:

- (1) A is a left self-injective regular left V-ring;
- (2) A is a left IQC ring such that any proper left ideal which contains every minimal projective left ideal of A is an intersection of maximal left ideals.

Proof. Apply ([7], Proposition 3) and ([7], Theorem 1) to Theorem 1.

We now characterise rings whose p-injective left modules are MD-injective.

Theorem 2. The following conditions are equivalent:

- (1) A is a left Noetherian ring whose p-injective left modules are injective;
- (2) every p-injective left A-module is MD-injective.

Proof. (1) implies (2) evidently.

Assume (2). Let M be a p-injective left A-module, H the injective hull of  ${}_{A}M$ . Write  $Q = {}_{A}M \oplus {}_{A}H$  and D = the set of ordered pairs (y, 0) for all  $y \in M$ . Then  ${}_{A}D$  is a direct summand of  ${}_{A}Q$  and  ${}_{A}M \approx {}_{A}D$ . If  $i \colon M \to H$  is the inclusion map,  $j \colon M \to Q$  and  $k \colon H \to Q$  the canonical injections, since  ${}_{A}Q$  is p-injective, then it is MD-injective by hypothesis, which implies there exists a left A-homomorphism  $g \colon Q \to Q$  such that gki = j. If  $p \colon Q \to M$  is the canonical projection, then  $u = pgk \colon {}_{A}H \to {}_{A}M$  such that ui = pj = identity map on M. This proves that  ${}_{A}M$  is a direct summand of  ${}_{A}H$ , whence M = H is injective. Since any direct sum of p-injective left A-modules is p-injective, then (2) implies (1) by ([2], Theorem 20.1).

The next two results connect IQC and MD-injective modules.

Theorem 1 and the proof of Theorem 2 yield the following MD-injective analogue of ([2], Proposition 20.4B).

Theorem 3. The following conditions are equivalent:

- (1) any MD-injective left A-module is injective;
- (2) the direct sum of any two MD-injective left A-modules is MD-injective;
- (3) the direct sum of any two MD-injective left A-modules is IQC.
- ([2], Theorem 24.20), ([6], Theorem 7.10), Theorem 1 and the proof of Theorem 2 also yield the next result.

Theorem 4. The following conditions are equivalent:

- (1) A is quasi-Frobeniusean:
- (2) A is a left and right Artinian IQC ring;
- (3) the direct sum of any injective and any projective left A-modules is MD-injective.

An element a of A is called left regular iff l(a) = 0. Call A a left MD-injective ring if  ${}_{A}A$  is MD-injective.

Proposition 5. Let A be a left MD-injective ring. Then

- (1) any left regular element of A is right invertible;
- (2)  $Z \subseteq J$ ;
- (3) every left or right A-module is divisible.
- Proof. (1) If  $c \in A$  such that l(c) = 0,  $f: Ac \to A$  the left A-monomorphism defined by f(ac) = a for all  $a \in A$ ,  $i: Ac \to A$  the inclusion map, since  ${}_{A}Ac \approx {}_{A}A$ , there exists a left A-homomorphism  $h: A \to A$  such that hi = f. If h(1) = d, 1 = f(c) = hi(c) = h(c) = ch(1) = cd which proves (1).
- (2) If  $z \in Z$ , for any  $a \in A$ , l(1-za)=0 implies (1-za)v=1 for some  $v \in A$ . This proves that  $z \in J$ .
- (3) If c is a non-zero-divisor of A, then cd = 1 for some  $d \in A$  by (1). Now cdc = c and r(c) = 0 imply dc = 1 which proves c invertible. Then for any left (resp. right) A-module M, M = cM (resp. M = Mc).

Let us now turn to a class of rings with special cyclic modules which generalise von Neumann regular rings.

Write « A satisfies (\*) » if, for any maximal right ideal R of A, any  $b \in R$ , there exists a positive integer n such that  $A/b^nR$  is a flat right A-module.

Note that a local ring A such that  $J^2=0$  satisfies (\*). Following [2], A is called a  $lift/rad\ ring$  if, for any  $a\in A$  such that  $a^2-a\in J$ , there exists an idempotent  $e\in A$  such that  $e-a\in J$ .

Proposition 6. Let A satisfy (\*). Then

- (1) any left regular element is right invertible;
- (2)  $Z \subseteq J$ ;
- (3) every left or right A-module is divisible;
- (4) if P is a reduced principal right ideal of A, then P = eA, where e is an idempotent such that (1-e) A is an ideal of A;
  - (5) A is a lift/rad ring.
- Proof. (1) If  $c \in A$  such that l(c) = 0, suppose that  $cA \neq A$ . If M is a maximal right ideal containing cA, there exists a positive integer n such that  $A/c^nM_A$  is flat. This implies that for any left ideal I,  $I \cap c^nM = c^nMI$ . In particular,  $c^{n+1} = c^ndc^{n+1}$  for some  $d \in M$ . Now  $(1 c^nd)c^{n+1} = 0$  implies  $c^nd = 1$  (because l(c) = 0), which contradicts  $cA \neq A$ . This proves (1).
  - (2) and (3) are proved as in Proposition 5.
- (4) If P = aA is a reduced principal right ideal, then  $l(a) \subseteq r(a)$  and if  $aA + r(a) \neq A$ , let M be a maximal right ideal containing aA + r(a). Then  $A/a^n M_A$  is flat for some positive integer n, which implies  $a^{n+1} = a^n u a^{n+1}$  for some  $u \in M$ . Now P reduced implies  $l(a^{n+1}) \subseteq r(a^{n+1}) = r(a)$  and therefore  $(1-a^n u) \in l(a^{n+1}) \subseteq r(a) \subseteq M$  implies  $1 \in M$ , contradicting  $M \neq A$ . This proves that aA + r(a) = A and we get  $a = a^2 b$  for some  $b \in A$ . Then P reduced implies a = aba and P = eA, where e = ab is idempotent. Since  $(ed ede)^2 = 0$  for any  $d \in A$  and P is reduced, then eA(1-e) = 0 implies  $A(1-e) \subseteq r(e) = (1-e)A$  which proves that (1-e)A is an ideal of A.
- (5) Let  $a \in J$ . If aA + r(a) = A, then  $a = a^2b$ ,  $b \in A$ , and since (1 ab) is right invertible, then a(1 ab) = 0 implies a = 0. Therefore if  $a \neq 0$ , let M be a maximal right ideal containing aA + r(a). The proof of (4) then shows that there exists a positive integer n and  $u \in M$  such that  $(1 a^n u)a^{n+1} = 0$ . Since  $(1 a^n u)$  is left invertible,  $a^{n+1} = 0$  which proves that J is a nilideal. Then (5) follows from ([2], Proposition 18.21).

Corollary 6.1. A is strongly regular iff A is a reduced ring satisfying (\*).

We now mention two results analogous to a well-known theorem of C. Faith-Y. Utumi (cfr. [4]<sub>1</sub>, Theorem 2.16) concerning quasi-injective modules. In the next two results, M denotes a left A-module,  $E = \operatorname{End}(_AM)$ ,  $V = \{f \in E | \ker f \text{ is essential in }_AM\}$ .

Proposition 7. Let M be an 10c left A-module. Then

- (1) E/V is von Neumann regular and V is the Jacobson radical of E;
- (2) E is a lift/rad ring.

Proposition 8. Let M be a MD-injective left A-module. Then V is an ideal of E which is contained in the Jacobson radical of E. If, in addition, every complement left submodule of M is isomorphic to a direct summand of  ${}_{A}M$ , then V is the Jacobson radical of E and E/V is von Neumann regular.

We are now in a position to characterise semi-simple Artinian rings in terms of IQC, MD-injective modules and rings satisfying (\*). If every divisible singular left A-module is injective, then A is left hereditary. If A is a semi-prime left Goldie ring, then it is well-known that every essential left ideal of A contains a non-zero-divisor. Then ([2], Theorem 24.20), ([5], Lemma 2.3), ([7]<sub>4</sub>, Theorem 2.4), Theorem 3, Proposition 6 and the proof of Theorem 2 yield

## Theorem 9. The following conditions are equivalent:

- (1) A is semi-simple Artinian;
- (2) every finitely generated left A-module is IQC;
- (3) every left A-module is MD-injective;
- (4) A is a MELT ring such that the direct sum of any two IQC left A-modules is IQC;
  - (5) A is a left IQC ring whose divisible singular left modules are injective;
- (6) A is a semi-prime ring whose MD-injective left modules coincide with flat left modules;
  - (7) A is a semi-prime left MD-injective, left or right Goldie ring;
  - (8) A is a semi-prime left or right Goldie ring satisfying (\*).

We conclude with a few remarks.

Remark 1. Since a reduced left ideal is left non-singular, Proposition 6(4) ensures that ([1], Corollary 6) holds for rings satisfying (\*).

Remark 2. If A is a prime ring satisfying (\*), then (a) the centre of A is a field, (b) either A is a division ring or every non-zero ideal of A contains a non-zero nilpotent element. (This is motivated by  $([7]_2, \text{Remark})$ .

Remark 3. A semi-prime left IQC ring with essential left socle is left self-injective regular. (Such rings need not satisfy the maximum condition on left annihilators).

Remark 4. Let A be a left IQC ring satisfying any one of the following conditions (1) A contains a non-zero non-singular left ideal or (2) A has non-zero p-injective left socle. Then A is left self-injective. It follows that a left IQC ring is either left self-injective or each of its non-zero left ideals contains a non-zero nilpotent element belonging to its left singular ideal.

#### References

- [1] G. F. Birkenmeier, Idempotents and completely semi-prime ideals, Comm. Algebra 11 (1983), 567-580.
- [2] C. Faith, Ring Theory, Algebra II, Vol. 191, Springer-Verlag 1976.
- [3] J. W. FISHER, Von Neumann regular rings versus V-rings, Ring Theory, Proc. Oklahoma Conference, Lecture notes, Dekker 7 (1974), 110-119.
- [4] K. R. GOUDEARL: [•]<sub>1</sub> Nonsingular rings and modules, Ring Theory, Pure and Appl. Math. 33, Dekker, New York 1976; [•]<sub>2</sub> Von Neumann regular rings, Monographs and studies in Math. 4, Pitman, London 1979.
- [5] S. K. Jain and S. Mohamed, Rings whose cyclic modules are continuous, J. Indian Math. Soc. 42 (1978), 197-202.
- [6] Y. Utumi, On continuous rings and self-injective rings, Trans. Amer. Math. Soc. 118 (1965), 158-173.
- [7] R. Yue Chi Ming: [•]<sub>1</sub> On von Neumann regular rings (II), Math. Scand. 39 (1976), 167-170; [•]<sub>2</sub> On annihilator ideals (II), Comment. Math. Univ. Sancti Pauli 28 (1979), 129-136; [•]<sub>3</sub> On von Neumann regular rings (IV), Riv. Mat. Univ. Parma (4) 6 (1980), 47-54; [•]<sub>4</sub> On von Neumann regular rings (V), Math. J. Okayama Univ. 22 (1980), 151-160; [•]<sub>5</sub> On regular rings and self-injective rings, Monatshefte für Math. 91 (1981), 153-166.

\* \* \*